Effect of Spot Welding Current and Cycles on the Mechanical Properties of Welded Galvanized Steel Sheets

2013 ◽  
Vol 795 ◽  
pp. 87-90 ◽  
Author(s):  
Shamsul Baharin Jamaludin ◽  
Mohd Noor Mazlee ◽  
Muhammad Rifki Ismail ◽  
Khairel Rafezi Ahmad ◽  
Kamarudin Hussin

Studies on the effects of welding current and cycles were carried on the galvanized steel sheets using spot welding. The welding currents used were 3 kA, 5 kA 6 kA and the welding cycles were 4, 6 and 8. Tensile shear and tensile peel load were determined on the joint of welded specimens. The results showed that the value of tensile shear load was lower than tensile peel load. The strength of the joint increased with the increasing of welding current and welding cycle used in the welding process.

SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 319
Author(s):  
Sukarman Sukarman ◽  
Amri Abdulah ◽  
Apang Djafar Shieddieque ◽  
Nana Rahdiana ◽  
Khoirudin Khoirudin

This article present the optimization work describes out to joint the dissimilar galvanized steel of SECC-AF (JIS G 3313) and SGCC (JIS G 3302) material. A zinc coating on the surfaces of the galvanized steel sheets will decrease the weldability characteristic of the material. This study used dissimilar galvanised steel sheets to obtain the highest tensile shear strength from the specified resistance spot welding. This research used the Taguchi method with 4-variables and mixed-experimental levels. The mixed-experimental level, namely 2-experimental levels for the first variable and 3-experimental levels for other variables. The highest tensile shear strength was achieved in 5282.13 N. This condition is achieved at a squeezed time of 20 cycles, 27 kA-welding currents, welding time of 0.5 seconds, and holding time of 18 cycles. The S/N ratio analysis has shown the welding current had the most significant effect, followed by welding time, squeeze time, and holding time. The delta values of S/N ratio were 0.79, 0.64, 0.26 and 0.07, respectively. The ANOVA analysis has shown that the P-value of welding current and welding time is 0.006 (0.6%) and 0.015 (1.5%), respectively. This result is expected for optimizing resistance spot welding quality in other materials or significant aspects.


2011 ◽  
Vol 216 ◽  
pp. 666-670 ◽  
Author(s):  
Prachya Peasura

This research was study the effect of resistance spot welding process on physical properties. The specimen was austenitic stainless steel sheet of 1 mm. The experiments with 23 factorial design. The factors used in this study are welding current at 8,000 and 12,000 Amp, welding time at 8 and 12 cycle and electrode force were set at 1.5 and 2.5 kN. The welded specimens were tested by tensile shear testing according to JIS Z 3136: 1999 and macro structure testing according to JIS Z 3139: 1978. The result showed that the welding current, welding time and electrode force had interaction on tensile shear and nugget size at 95% confidential (P value < 0.05). Factors affecting the tensile shear are the most welding current of 12,000 amp., welding time of 8 cycle and electrode force of 2.5 kN. were tensile shear of 9.83 kN. The nugget size was maximum at 7.15 mm. on welding current of 12,000 amp., welding time of 12 cycle and electrode force of 1.5 kN This research can bring information to the foundation in choosing the appropriate parameters to resistance spot welding process.


2018 ◽  
Vol 218 ◽  
pp. 04005
Author(s):  
Lingga Arti Saputra ◽  
Nurul Muhayat ◽  
Triyono

Global warming can be reduced by controlling emissions in motor vehicles. Lightweight aluminum materials can lower the engine work so as to reduce fuel consumption.The effect of dwell time on mechanical properties and microstructure friction stir spot welded AA1100 with particle interlayer Zn were investigated. The result shows that the particle interlayer Zn affect to the mechanical properties. The tensile shear load friction stir spot welded AA1100 with particle interlayer Zn is higher than hart of without particle interlayer Zn. In line with tensile shear load that the hardness of friction stir spot welded Al with particle interlayer Zn got the higher hardness than of without particle interlayer Zn. The addition of particle interlayer Zn reduce the hook defect and spread in the aluminum matrix as solid solution.


2014 ◽  
Vol 675-677 ◽  
pp. 15-18 ◽  
Author(s):  
Long Long Hou ◽  
Ran Feng Qiu ◽  
Hong Xin Shi ◽  
Jun Qing Guo

Aluminum alloy A6061 and mild steel Q235 was welded using resistance spot welding with an interlayer of AlCu28. The mechanical properties of the joint were investigated; the effects of various welding parameters on nugget diameter and tensile shear load of the joints were systematically discussed. The results reveal that it is effective to weld aluminum alloy and mild steel using resistance spot welding with an interlayer of AlCu28.


2013 ◽  
Vol 652-654 ◽  
pp. 2326-2329 ◽  
Author(s):  
Hui Liu ◽  
Xue Dong Xu ◽  
Xiao Qing Zhang

The experimental investigations on resistance spot welding are presented for 316 stainless steel. The influence of spot welding parameters (welding time, electrode force and welding current) on the tensile shear load and the diameter of nugget have been researched, based on an orthogonal test and analysis method. The results show that welding current has significant influence on the tensile shear load and diameter of nugget, and then is electrode force, welding time in turn. The optimum parameters are as follows: welding time is 5 cycles, electrode force is 3.5KN and welding current is 5.5KA. And the maximum tensile shear force of joint is up to 13.55KN.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Aditya Noor ◽  
Nurul Muhayat ◽  
. Triyono

<p><em>Friction stir spot welding (FSSW) is one of the development of solid state welding to joint lightweight materials such as aluminium. In the automotive industry, lightweight materials are needed in the structure of vehicle construction to improve efficiency in vehicles. This research aims to find out how the effect of rotational speed and dwell time on physical and mechanical properties on the weld joint of aluminium 1100 with Zn interlayer addition. Variations used in rotational speed 1000, 1250, 1600 rpm and dwell time 6, 7, 8 s. Pullout fracture occur in tensile tests that are getting bigger with increasing rotational speed and dwell time. The results of SEM and EDS observations showed that the metallurgical bonded zone increased and kept the hook defect away. The spread of Zn in the stir zone area causes the formation of solid Al-Zn phase in a solid solution. The hook defect filled with Zn can minimize cracks that occur, so increased the tensile shear load. The highest tensile shear load value of FSSW AA1100 without Zn interlayer is 3.61 kN, while the FSSW AA1100 with Zn interlayer addition is 4.34 kN.</em></p>


2019 ◽  
Vol 269 ◽  
pp. 01005 ◽  
Author(s):  
Nurul Muhayat ◽  
Bobby Priatmana Putra ◽  
Triyono

Friction stir spot welding (FSSW) can substitute resistance spot welding (RSW) to avoid the problem due to melting materials during welding. In this investigation, a friction stir spot welded 6082 T6 joint was made to study the effect of pin diameter and dwell time on mechanical properties and microstructure with variation of pin diameter and dwell time. In the stir zone, it is observed that the grain structure is fine equiaxed recrystallized grain whereas in the HAZ, it is coarse grain. The increase of pin diameter and dwell time lead to the increase of tensile shear load. The highest tensile-shear load obtained is 4987.1 N at the highest pin diameter of 7 mm and dwell time of 3 seconds, while the lowest one is 788.2 N that obtained at pin diameter pin of 3 mm and dwell time 3 second. The highest micro Vickers hardness obtained at stir zone of 96.2 VHN, while the lowest one is 42.1 VHN.


Sign in / Sign up

Export Citation Format

Share Document