Evaluation of tensile shear strength for dissimilar spot welds of Al-Si-Mg aluminum alloy and galvanized steel by delta-spot welding process

2019 ◽  
Vol 33 (11) ◽  
pp. 5399-5405
Author(s):  
Young-Gon Kim ◽  
Dong-Cheol Kim ◽  
Sung-Min Joo
Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1077 ◽  
Author(s):  
Seungmin Shin ◽  
Sehun Rhee

In this study, lap joint experiments were conducted using galvanized high-strength steel, SGAFH 590 FB 2.3 mmt, which was applied to automotive chassis components in the gas metal arc welding (GMAW) process. Zinc residues were confirmed using a semi-quantitative energy dispersive X-ray spectroscopy (EDS) analysis of the porosity in the weld. In addition, a tensile shear test was performed to evaluate the weldability. Furthermore, the effect of porosity defects, such as blowholes and pits generated in the weld, on the tensile shear strength was experimentally verified by comparing the porosity at the weld section of the tensile test specimen with that measured through radiographic testing.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Thongchai Arunchai ◽  
Kawin Sonthipermpoon ◽  
Phisut Apichayakul ◽  
Kreangsak Tamee

Resistance Spot Welding (RSW) is processed by using aluminum alloy used in the automotive industry. The difficulty of RSW parameter setting leads to inconsistent quality between welds. The important RSW parameters are the welding current, electrode force, and welding time. An additional RSW parameter, that is, the electrical resistance of the aluminum alloy, which varies depending on the thickness of the material, is considered to be a necessary parameter. The parameters applied to the RSW process, with aluminum alloy, are sensitive to exact measurement. Parameter prediction by the use of an artificial neural network (ANN) as a tool in finding the parameter optimization was investigated. The ANN was designed and tested for predictive weld quality by using the input and output data in parameters and tensile shear strength of the aluminum alloy, respectively. The results of the tensile shear strength testing and the estimated parameter optimization are applied to the RSW process. The achieved results of the tensile shear strength output were mean squared error (MSE) and accuracy equal to 0.054 and 95%, respectively. This indicates that that the application of the ANN in welding machine control is highly successful in setting the welding parameters.


2015 ◽  
Vol 819 ◽  
pp. 45-49 ◽  
Author(s):  
Shamsul Baharin Jamaludin ◽  
Mohd Zahir Abd Latif ◽  
Mohd Noor Mazlee ◽  
Kamarudin Hussin

The effect of welding current on the joining of mild steel and aluminum 6063 has been investigated. The joining was carried using a tungsten inert gas (TIG) welding. The welding currents used were 30 A to 80 A. The formation of intermetallic reaction layers (IML) and tensile shear strength of the joining were investigated. The result showed that tensile shear strength increased as welding current increased up to 55 A. Microstructural analysis showed that intermetallic reaction layer was formed at the interface between steel and aluminum alloy during welding process. The thickness of IML was decreased with decreasing welding current.


2004 ◽  
Vol 261-263 ◽  
pp. 1623-1628 ◽  
Author(s):  
Do Won Seo ◽  
Yang Bae Jeon ◽  
Jae Kyoo Lim

Spot welding is a process that sheet metals are joined in one or more spot by heating at the faying interface. In this process, the spatter is dispersed from melted area. It has been reported that spatter generation has adverse effects on weld quality. However, no systematic study has been carried out to find out its effect on weld quality in resistance spot welding processes. In this study, specially designed specimens are used to perform experimental investigation of spatter generation and its effect. Major finding of this study show trends in tensile-shear strength for various amounts of spatter generated during spot welding process. Thus, optimum welding conditions are proposed in view of spatter generation and tensile-shear strength.


2018 ◽  
Vol 29 ◽  
pp. 19-25
Author(s):  
A.M. Al-Mukhtar ◽  
Shaymaa Abdul Khader Al-Jumaili ◽  
Ali Hussein Fahem Al-Jlehawy

The shear strength of 302 austenitic stainless steel spot welds has been studied. Thewelding current in resistance spot welding process (RSW) plays a significant role. However,this item's effect is well known and extensively studied in the previous literature. This work aims toshow the heat treatment’s effect on different joints that welded at various current. The experimentalresults show that the tensile shear strength is increased with increasing the current. Annealingtreatment improves the tensile shear strength due to the reformation of the grain size and removesthe residual stresses. Grain refinement is an effective technique for improving the strength.Therefore, the tensile shear strength is increased by annealing treatment temperature up to 750 °C.However, at 850°C, the tensile shear strength is dropped down.


2012 ◽  
Vol 602-604 ◽  
pp. 2123-2129
Author(s):  
Nan Wang ◽  
Tomiko Yamaguchi ◽  
Kazumasa Nishio

In this study, effects of welding time and elements Mg, Si and Cu in aluminum alloys on hardness and tensile shear strength of aluminum alloys/steel joints in resistance spot welding have been investigated. The welding current was kept a constant 10.5kA and electrode force was 1kN. Welding time was increased from 0.067s up to 0.2s with a rise of 0.033s. Two intermetallic compound layers were generated at weld interfacial zones between aluminum alloys and steel during welding process, and the major phases were FeAl3 adjacent and directing to aluminum alloy and Fe2Al5 adjacent and directing to the steel. Diffusion of Si in aluminum alloy occurred at the interface, whereas the diffusion of Mg and Cu was not observed at the interface according to the EPMA analysis results. Hardness of intermetallic compound layers was 13.8GPa, which was about 12 times as much as that of the aluminum alloy. The largest tensile-shear strength was obtained on the condition of 0.134 and 0.167s welding time.


SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 319
Author(s):  
Sukarman Sukarman ◽  
Amri Abdulah ◽  
Apang Djafar Shieddieque ◽  
Nana Rahdiana ◽  
Khoirudin Khoirudin

This article present the optimization work describes out to joint the dissimilar galvanized steel of SECC-AF (JIS G 3313) and SGCC (JIS G 3302) material. A zinc coating on the surfaces of the galvanized steel sheets will decrease the weldability characteristic of the material. This study used dissimilar galvanised steel sheets to obtain the highest tensile shear strength from the specified resistance spot welding. This research used the Taguchi method with 4-variables and mixed-experimental levels. The mixed-experimental level, namely 2-experimental levels for the first variable and 3-experimental levels for other variables. The highest tensile shear strength was achieved in 5282.13 N. This condition is achieved at a squeezed time of 20 cycles, 27 kA-welding currents, welding time of 0.5 seconds, and holding time of 18 cycles. The S/N ratio analysis has shown the welding current had the most significant effect, followed by welding time, squeeze time, and holding time. The delta values of S/N ratio were 0.79, 0.64, 0.26 and 0.07, respectively. The ANOVA analysis has shown that the P-value of welding current and welding time is 0.006 (0.6%) and 0.015 (1.5%), respectively. This result is expected for optimizing resistance spot welding quality in other materials or significant aspects.


Author(s):  
Morteza Asadollahi ◽  
Neda Jabbari ◽  
Soheil Nakhodchi ◽  
Hossein Salimi ◽  
Hamed Haddad Khodaparast

The tensile-shear strength of AA 5052 single and multi-friction stir spot welding joints were analyzed using experimental, numerical, and analytical approaches. Benchmark specimens were designed and manufactured in a similar manner with respect to industrial practice. Under the fixed welding process condition, the failure mechanism of friction stir spot welded specimens under tensile-shear loading was first determined by using macro- and micro-structural analysis. It is shown that increasing the tool shoulder diameter and the number of friction stir spot weldings may nonproportionally increase the strength of the joints. In the linearly arranged multi-friction stir spot welding joints, the strength of these joints was discussed using analytical approach. It is demonstrated that in certain cases, increasing the nugget diameter is preferred than increasing the number of nuggets. This is only applicable to a certain friction stir spot welding failure mechanism. A finite element model prediction tool was developed to predict the tensile-shear strength of friction stir spot welded joints using the material properties obtained from the measurement of experimental hardness.


Sign in / Sign up

Export Citation Format

Share Document