scholarly journals EFFECT OF ROTATIONAL SPEED AND DWELL TIME ON PHYSICAL AND MECHANICAL PROPERTIES OF FRICTION STIR SPOT WELDING ALUMINIUM 1100 WITH ZN POWDER INTERLAYER ADDITION

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Aditya Noor ◽  
Nurul Muhayat ◽  
. Triyono

<p><em>Friction stir spot welding (FSSW) is one of the development of solid state welding to joint lightweight materials such as aluminium. In the automotive industry, lightweight materials are needed in the structure of vehicle construction to improve efficiency in vehicles. This research aims to find out how the effect of rotational speed and dwell time on physical and mechanical properties on the weld joint of aluminium 1100 with Zn interlayer addition. Variations used in rotational speed 1000, 1250, 1600 rpm and dwell time 6, 7, 8 s. Pullout fracture occur in tensile tests that are getting bigger with increasing rotational speed and dwell time. The results of SEM and EDS observations showed that the metallurgical bonded zone increased and kept the hook defect away. The spread of Zn in the stir zone area causes the formation of solid Al-Zn phase in a solid solution. The hook defect filled with Zn can minimize cracks that occur, so increased the tensile shear load. The highest tensile shear load value of FSSW AA1100 without Zn interlayer is 3.61 kN, while the FSSW AA1100 with Zn interlayer addition is 4.34 kN.</em></p>

2018 ◽  
Vol 218 ◽  
pp. 04005
Author(s):  
Lingga Arti Saputra ◽  
Nurul Muhayat ◽  
Triyono

Global warming can be reduced by controlling emissions in motor vehicles. Lightweight aluminum materials can lower the engine work so as to reduce fuel consumption.The effect of dwell time on mechanical properties and microstructure friction stir spot welded AA1100 with particle interlayer Zn were investigated. The result shows that the particle interlayer Zn affect to the mechanical properties. The tensile shear load friction stir spot welded AA1100 with particle interlayer Zn is higher than hart of without particle interlayer Zn. In line with tensile shear load that the hardness of friction stir spot welded Al with particle interlayer Zn got the higher hardness than of without particle interlayer Zn. The addition of particle interlayer Zn reduce the hook defect and spread in the aluminum matrix as solid solution.


2018 ◽  
Vol 7 (4.1) ◽  
pp. 3037
Author(s):  
Isam Tareq Abdullah ◽  
Zaman Khalil Ibrahim ◽  
Ahmed Ibrahim Razooqi

Friction stir spot welding-FSSW has been suggested as effectual process to welding difficult materials such as dissimilar materials and thin sheet of metal alloys. In this study, using dissimilar materials were welded carbon steel-1006 on upper plate and aluminum alloy AA2024-T3 on lower plate. Macrostructure, micro-structural analysis and mechanical properties of the joints are done. The effect of penetration depth, dwell time and spindle speed on tensile shear load are investigated with invariable of other parameter during welding process. The maximum tensile shear load (3.31KN) was occurred when using 0.4mm of penetration depth, 10 sec of dwell time and 1400 rpm of spindle speed. Also, two type of failure shape was observed interfacial fracture of carbon steel sheet and pull-out fracture of AA2024-T3 sheet.


2019 ◽  
Vol 3 (2) ◽  
pp. 59
Author(s):  
Pathya Rupajati ◽  
Pathya Rupajati

Abstrak  Salah satu karakteristik sifat mekanis yang penting untuk dianalisis adalah tensile shear load. Penelitian ini bertujuan untuk melakukan optimasi tensile shear load hasil pengelasan micro friction stir welding (µFSSW) pada material AA1100 dan Cu1100P menggunakan metode Taguchi. Rancangan percobaan yang digunakan dalam penelitian ini adalah matriks orthogonal array L8 dengan memvariasikan parameter proses pengelasan yaitu dwell time dan plunge depth yang memiliki masing-masing empat level dan dua level. Sedangkan variabel konstan yang digunakan adalah tool rotational speed sebesar 33.000 rpm. Hasil penelitian menunjukkan bahwa parameter pengelasan yang memiliki kontribusi terbesar dalam meningkatkan tensile shear load hasil pengelasan micro friction stir spot welding adalah dwell time, yang menghasilkan tensile shear load sebesar 265,12 N dengan seting kombinasi dwell time pada 5 s dan plunge depth pada 0,7 mm. Hasil struktur mikro juga menunjukkan terlihat adanya flash dan hook defect, tetapi tidak menujukkan adanya intermetallic compound dan crack. Kata kunci: A1100, µFSSW, Taguchi, Dwell time, Plunge Depth


2019 ◽  
Vol 269 ◽  
pp. 01005 ◽  
Author(s):  
Nurul Muhayat ◽  
Bobby Priatmana Putra ◽  
Triyono

Friction stir spot welding (FSSW) can substitute resistance spot welding (RSW) to avoid the problem due to melting materials during welding. In this investigation, a friction stir spot welded 6082 T6 joint was made to study the effect of pin diameter and dwell time on mechanical properties and microstructure with variation of pin diameter and dwell time. In the stir zone, it is observed that the grain structure is fine equiaxed recrystallized grain whereas in the HAZ, it is coarse grain. The increase of pin diameter and dwell time lead to the increase of tensile shear load. The highest tensile-shear load obtained is 4987.1 N at the highest pin diameter of 7 mm and dwell time of 3 seconds, while the lowest one is 788.2 N that obtained at pin diameter pin of 3 mm and dwell time 3 second. The highest micro Vickers hardness obtained at stir zone of 96.2 VHN, while the lowest one is 42.1 VHN.


Author(s):  
Sudhir Kumar ◽  
◽  
Sachin Jambhale ◽  
Manish Maurya ◽  
Sanjeev Kumar ◽  
...  

This experimental work investigates the tensile behavior of friction stir spot welded joints from 3 mm thick aluminum alloy AA6082-T6 sheets. Taguchi L9 Orthogonal array was used for process parameters - Tool rotational speed (TRS), Dwell time (DT) and Shoulder diameter (SD) with consideration of three levels. Friction Stir Spot Welding (FSSW) was performed on vertical milling machine. Tensile shear test was conducted on Universal testing machine (UTM) to find out the tensile shear failure load (TSFL). The optimal combinations of parameters were at tool rotational speed of 2,000 rpm, dwell time of 15 seconds and tool shoulder diameter of 16 mm. Tool rotational speed had a substantial effect on tensile shear strength of FSSW joint. Scanning Electron Microscopy (SEM) tests revealed that the changes in microstructure in different zones of FSSW joint were observed. Tensile shear specimen was analyzed using SEM to observe the behavior of fracture surfaces. Significant ductility in the fracture surface was an evident in the fractography. In this article, attention is focused on the influence of joining parameters on the mechanical behavior of the friction stir spot weld under the tensile shear load condition. Keywords: Fractography; friction stir spot welding (FSSW); heat affected zone (HAZ); scanning electron microscopy (SEM); thermo-mechanically affected zone (TMAZ).


2017 ◽  
Vol 867 ◽  
pp. 105-111
Author(s):  
S. Ramesh Babu ◽  
M. Nithin ◽  
S. Pavithran ◽  
B Parameshwaran

The Electrical Resistance Welding (ERW) of Magnesium and Aluminium is more difficult than steel because the welding machines must provide high currents and exact pressures in order to provide the heat necessary to melt the magnesium for proper fusion at the interface in order to produce a sound weld. Further, resistance welding of magnesium requires a backup plate made of steel to conduct the heat to the workpiece material. To overcome this problem, Friction Stir Spot Welding (FSSW) has been developed. In this study, the hardness distribution and the tensile shear strength of FSSW welds in the AZ31B Magnesium alloy has been investigated and it has been found that tool rotational speed and dwell time plays a major role in determining the weld strength. From the experimental study, a tool rotational speed of 1100 rpm and dwell time of 20 s produced good shear strength of 2824 N and the corresponding grain size was 4.54 μm. This result is very well supported by microstructural examinations and hardness distribution studies.


2014 ◽  
Vol 633-634 ◽  
pp. 601-606
Author(s):  
Xi Jing Wang ◽  
Xiao Long Wang ◽  
Zhong Ke Zhang ◽  
Wen Xia Jing

The 2 mm sheet of 6082 - T6 aluminum alloy was carried to develop refill friction stir welding and withdrawing friction stir spot welding,the forming of solder joints , the cross-sectional microstructure and fracture morphology of welding joints were observed and analyzed, the cross-sectional microhardness of welding joints were tested. Tensile shear load and fracture mode were contrasted simultaneously. The results showed that smooth surface and free of macroscopic defects of welding joints could be obtained in both welding type. Tensile shear load of WFSSW was up to 10.28kN under the optimal process parameters greater than RFSSW’s 8.62kN.


2018 ◽  
Author(s):  
Ahmed Mahgoub ◽  
Abdelaziz Bazoune ◽  
Fadi Al-Badour ◽  
Necar Merah ◽  
Abdelrahman Shuaib

In this paper, a Coupled Eulerian Lagrangian (CEL) finite element model (FEM) was developed to simulate the friction stir spot welding (FSSW) of commercial pure copper. Through simulations results, the paper presents and discusses the effect of FSSW process parameters; namely rotational speed, plunging rate and dwell time, on the developed temperatures and their distribution within the workpiece as well as material flow and deformation. Model validation showed a good agreement between predicted temperature history and the experiment one, with a maximum error of 6%. Furthermore, the predicted formation of flash was also found in good agreement with the experiment with an error of only 7%. Simulation results predicted peak temperature and plastic strain among all studied welding conditions were 920 K and 3.5 respectively at 1200 rpm rotational speed, 20 mm/min plunging rate and 4 seconds dwell time, which is approximately 70% of the melting point of pure copper.


2020 ◽  
pp. 009524432096152
Author(s):  
Asil Ayaz ◽  
Aydin Ülker

In this study, a new method was proposed to reduce the keyhole volume with friction stir spot welding process and improve the lap joint shear load-carrying capacity of the weld by analyzing the effects of tool rotation speed, plunge depth and dwell time on the weld. Single lap shear tests were carried out to determine the influences of the welding parameters on the mechanical behavior of the welds. The quality of the joint was evaluated by examining the characteristics of the joint as a result of the lap joint shear load. For friction stir spot welding of the acrylonitrile butadiene styrene samples, the experiments were designed according to Taguchi’s L9 orthogonal array in a randomized way. From the analysis of variance and the signal-to-noise ratio, the significant parameters and the optimum combination level of the parameters were obtained. It was found that using a tool rotation of 1000 rpm, plunge depth 11.5 mm and dwell time of 40 s, an improved joint strength can be obtained. The results showed that joint strength was improved by an amount of 20% as compared with the optimum welding parameters to the initial welding parameters. Macrostructure examination plays an important role to determine the joint strength and evaluate the influences of each welding parameters. So, weld morphology was investigated by morphological analysis and visual comparisons. It was also observed failure modes for fractured samples having the highest, moderate and lowest lap joint shear load.


Author(s):  
Ahmed Mahgoub ◽  
Neçar Merah ◽  
Abdelaziz Bazoune

Abstract Friction Stir Spot Welding (FSSW) is a solid-state joining technique widely applied to high conductive metals. In this paper, the effects of FSSW parameters, namely, rotational speed (N), plunging rate (V) and dwell time (DT) on the joint fracture mode and fractured surface morphology were investigated using scanning electron microscopy (SEM). The effect of the abovementioned welding parameters on the microhardness profile along the sheets’ interface was also investigated to gain insight into the strength of the joint and the width of the bonding ligament. Two conditions were considered for each parameter 1200 rpm and 900 rpm for N, 60 mm/min and 20 mm/min for V, 4 and 2 seconds for DT. The welding condition 1200 rpm rotational speed, 20 mm/min plunging rate and 2 seconds dwell time showed a wider bonding ligament, relatively higher elongation, higher tensile failure load, and greater microhardness on the sheets’ interface. Dimple surface morphology (DSM) with regular dimples along the stir zone was also observed at the abovementioned set of process parameters.


Sign in / Sign up

Export Citation Format

Share Document