A Numerical and Experimental Study of Sheet Metal Bending by Pulsed Nd:Yag Laser with DOE Method

2009 ◽  
Vol 83-86 ◽  
pp. 1076-1083 ◽  
Author(s):  
M. Hosseinpour Gollo ◽  
Hassan Moslemi Naeini ◽  
G.H. Liaghat ◽  
S. Jelvani ◽  
M.J. Torkamany

Metal forming by a laser source is an efficient and economical method for forming sheet metal into straight bend and doubly curved shape. It can be most useful in the automation of sheet metal forming. This paper presents an FEM model for three dimensional thermo-mechanical simulation of the laser forming. The aim of this simulation and experimental study is to identify the response related to deformation and characterize the effects of process parameters such as laser power, beam diameter, scans velocity and pulse duration, in terms of bending angle for a square sheet part. Extensive experimentation, including a design of experiments, is performed to address the above-mentioned aims. From these experiments it has been determined that laser forming using Nd:YAG laser is a flexible manufacturing process for steel sheet bending.

2019 ◽  
Vol 969 ◽  
pp. 552-557
Author(s):  
Kuntal Maji

Fabricating three dimensional shaped surfaces from flat sheet metals by laser forming, both out-of-plane and in-plane deformations are required. This article presents the modeling of coupling mechanism activated laser forming of sheet metals based on experimental data for prediction and optimization of bending and thickening deformations. Experiments were performed based on a central composite design of experiments on coupling mechanism based laser metal forming process considering the input process parameters like laser power, scan speed and spot diameter, bending and thickening were taken as the outputs. Neural network and neuro-fuzzy system-based models were developed to carry out both forward and inverse modeling of the laser metal forming process under the coupling mechanism. Multi-objective optimization based on the non-dominated sorting genetic algorithm was used to obtain multiple optimal solutions to achieve different amounts of out-of-plane and in-plane deformations. The proposed method could guide for a suitable selection of the process parameters to produce three-dimensional shapes utilizing coupling mechanism-based laser forming using multiple laser line heating.


2013 ◽  
Vol 365-366 ◽  
pp. 549-552
Author(s):  
Zhou Sui ◽  
Zhong Yi Cai ◽  
Ming Zhe Li

The continuous flexible roll forming process is a novel sheet metal forming technique for effectively manufacture of three-dimensional surface parts. In this study, two types of finite element (FE) models were developed under the ABAQUS/Explicit environment. The difference of the two models is that the rolls are defined as discrete rigid bodies in model No.1 and are deformable in model No.2. An experiment was carried out using the continuous sheet metal forming setup. The comparison of the numerical computation results with the experimental results shows that the model No.2 can be used for the shape prediction of continuous flexible roll forming process well.


2019 ◽  
Vol 9 (20) ◽  
pp. 4463 ◽  
Author(s):  
Daniyal Abolhasani ◽  
Seyed Mohammad Hossein Seyedkashi ◽  
Mohammad Hoseinpour Gollo ◽  
Young Hoon Moon

In this study, the effects of beam diameter and hatch spacing between the scanning paths on the bendability and microstructural behavior of an AISI 316 stainless-steel sheet in three-dimensional laser forming were investigated. The strain on the heating lines and that between the scanning tracks were numerically investigated to elucidate the effects of process parameters. The strain on heating lines and that between scanning tracks were numerically investigated. The increase in hatch spacing caused a larger amount of counter bending to be retained in the unaffected areas between the tracks through a process dominated by a temperature gradient mechanism (TGM), and also caused a lower deformation. The formation of small equiaxed dendrite grains instead of coarse and inhomogeneous austenite grains occurred during the process at a larger beam diameter and smaller hatch spacing, which increased the bendability of the material, owing to the decrease in anisotropy in the microstructure. Moreover, the increase in the grain size of the reheated overlap region of the deformed sample led to a higher bendability. Under these conditions, the microhardness was also increased owing to the grain boundary strengthening effect.


Author(s):  
Rakesh Lingam ◽  
Anirban Bhattacharya ◽  
Javed Asghar ◽  
N. Venkata Reddy

Incremental Sheet Metal Forming (ISMF) is a flexible sheet metal forming process that enables forming of complex three dimensional components by successive local deformations without using component specific tooling. ISMF is also regarded as die-less manufacturing process and in the absence of part-specific dies, geometric accuracy of formed components is inferior to that of their conventional counterparts. In Single Point Incremental Forming (SPIF), the simplest variant of ISMF, bending near component opening region is unavoidable due to lack of support. The bending in the component opening region can be reduced to a larger extent by another variant of ISMF namely Double Sided Incremental Forming (DSIF) in which a moving tool is used to support the sheet locally at the deformation zone. However the overall geometry of formed components still has unacceptable deviation from the desired geometry. Experimental observation and literature indicates that the supporting tool loses contact with the sheet after forming certain depth. Present work demonstrates a methodology to enhance geometric accuracy of formed components by compensating for tool and sheet deflection due to forming forces. Forming forces necessary to predict compensations are obtained using force equilibrium method along with thickness calculation methodology developed using overlap that occurs during forming (instead of using sine law). Results indicate that there is significant improvement in accuracy of the components produced using compensated tool paths.


2010 ◽  
Vol 154-155 ◽  
pp. 1152-1156
Author(s):  
Min Feng Jiang ◽  
Lei Ding ◽  
Yuan Yuan Zheng ◽  
Xiao Wang ◽  
Hui Xia Liu

Laser forming is a new flexible sheet metal forming process. By means of the theory of orthogonal experimental design method, design of experiment and optimization were carried out on thin aluminum-lithium alloy AA2090 sheet metal laser forming under the condition of water-cooling. And through the calculation and analysis of the experiments, the effect of the four process parameters related to the energy of laser beam on bending angle under the condition of water-cooling were ranked in order of laser power, number of scan, scan speed and beam diameter. Furthermore, the optimum process parameters were obtained, and experiment verifications were carried out.


Wear ◽  
1998 ◽  
Vol 216 (2) ◽  
pp. 244-250 ◽  
Author(s):  
M. Pfestorf ◽  
U. Engel ◽  
M. Geiger

Sign in / Sign up

Export Citation Format

Share Document