Vehicle-Bridge Interaction Analysis via ANSYS and MATLAB

2013 ◽  
Vol 838-841 ◽  
pp. 1135-1139
Author(s):  
Heng Liu ◽  
Wei Ping Xie ◽  
Lei Li

In order to establish and solve vehicle-bridge interaction matrix equations more easily and able to be applied to any vehicle-bridge interaction problems, a procedure has been programmed based on the ANSYS and MATLAB. Its feasibility and accuracy has been verified via comparing the results of a simple example with another verified procedure programed in the same method based on MATLAB. A study of contrasting moving load model and moving sprung mass model has been done with the former procedure. It indicates that the inertia force of the mass has a low effect on the dynamic response of vehicle and bridge when the vertical roughness of the bridge and damping effect are ignored.

Mechanika ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 80-87
Author(s):  
Hougui ZHANG ◽  
Ruixiang SONG ◽  
Jie YANG ◽  
Dan WU ◽  
Yingjie WANG

In this paper, a novel damage detection approach for the spring connection of the double beam system using the dynamic response of the beam and genetic algorithm is presented. The double beam system is regarded as both Bernoulli-Euler beams with simply supported ends, the upper and lower beams are connected by a series of linear springs with certain intervals. With the genetic algorithm, the dynamic acceleration response of double beam system under moving load, which can be solved by the Newmark-β integration procedure, is used as the input data to detect the connection damage. Thus the dynamic response of the double beam system with a certain damage pattern can be calculated employing the moving load model. If the calculated result is quite close to the recorded response of the damaged bridge, this damage pattern will be the solution. The connection damage detection process of the proposed approach is presented herein, and its feasibility is studied from the numerical investigation with simple and multiple damages detection. It is concluded that the sophisticated damage conditions need much longer time to detect successfully.


2011 ◽  
Vol 255-260 ◽  
pp. 3687-3691 ◽  
Author(s):  
Jia Dong Wang ◽  
Ding Zhou ◽  
Wei Qing Liu

Sloshing response of liquid in a rigid cylindrical tank with a rigid annual baffle under horizontal sinusoidal loads was studied. The effect of the damping was considered in the analysis. Natural frequencies and modes of the system have been calculated by using the Sub-domain method. The total potential function under horizontal loads is assumed to be the sum of the tank potential function and the liquid perturbed function. The expression of the liquid perturbed function is obtained by introducing the generalized coordinates. Substituting potential functions into the free surface wave conditions, the dynamic response equations including the damping effect are established. The damping ratio is calculated by Maleki method. The liquid potential are obtained by solving the dynamic response equations of the system.


2018 ◽  
Vol 25 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Zhanpeng Zheng ◽  
Chengjun Wu ◽  
Hengliang Wu ◽  
Jianyong Wang ◽  
Xiaofei Lei

Nonobstructive particle damping (NOPD) is a novel passive control technology with strong nonlinear-damping. Many scholars put effort into the research on the internal mechanism of NOPD. In contrast, the application of NOPD to engineering has not received much research effort. A theoretical model based on the principle of gas–solid flows, which is employed to evaluate damping effect of NOPD and to predict dynamic response of a machine rack by a co-simulation approach, is established in this paper. In view of the difference between damping effect acting on the lateral and bottom of NOPD holes directly, total damping force is divided into lateral damping force and bottom damping force according to the Janssen theory of stress changed direction. Moreover, NOPD technology is applied to a machine rack for discussing its vibration isolation performance. The results indicate that NOPD technology can suppress the intense vibration, especially between 4000 Hz and 8000 Hz. It is noted that the theoretical model of NOPD can accurately predict the dynamic response of the machine rack with NOPD. The 1/3 Octave vibration energy spectrum indicates that NOPD technics can dissipate the vibration energy of the machine rack at full frequency, especially in 31.5 Hz, and attenuation up to 39.75 dB.


2014 ◽  
Vol 36 (4) ◽  
pp. 245-254
Author(s):  
N. T. Khiem ◽  
P. T. Hang

In present paper, the spectral approach is proposed for analysis of multiple cracked beam subjected to general moving load that allows us to obtain explicitly dynamic response of the beam in frequency domain. The obtained frequency response is straightforward to calculate time history response by using the FFT algorithm and provides a novel tool to investigate effect of position and depth of multiple cracks on the dynamic response. The analysis is important to develop the spectral method for identification of multiple cracked beam by using its response to moving load. The theoretical development is illustrated and validated by numerical case study.


Author(s):  
Milan Moravčík ◽  
Martin Moravčík

Abstract The paper is devoted dynamic effects in the track structure - the quasi-static excitation due to moving load, as the important source for the response of track components in the low frequency area (0 Hz < f < 40 Hz). The low-frequency track (the rail) response is associated with periodicity of wheel sets, bogies, and carriages of passage trains, The periodicity of track loading is determined by so called dominant frequencies f(d) at a position x of the track.


1974 ◽  
Vol 41 (3) ◽  
pp. 663-667 ◽  
Author(s):  
C. Sve ◽  
G. Herrmann

A solution is presented for the dynamic response of a periodically laminated half plane that consists of alternating layers of two different materials and is subjected to a moving load. The laminations are parallel to the surface of the half plane, and the velocity of the load is steady and supersonic. An effective stiffness theory developed by Sun, Achenbach, and Herrmann is used to model the layered material, and the formal solution is obtained with the aid of Laplace transforms. A far-field solution is constructed with the head-of-the-pulse procedure, and several numerical examples are presented.


Sign in / Sign up

Export Citation Format

Share Document