SHM of Historic Damaged Churches

2013 ◽  
Vol 838-841 ◽  
pp. 2071-2078 ◽  
Author(s):  
Giosuè Boscato ◽  
Alessandra Dal Cin ◽  
Salvatore Russo ◽  
Francesca Sciarretta

The paper shows the results of monitoring activities to check the structural response and the level of damage of two historic monument of LAquila: San Pietro di Coppito and Santa Maria Paganica, that were damaged by the main earthquake of April 2009. The diagnostics operation was planned and carried out in situ and in laboratory to verify the integrity of the residual stiffness of the structures and to define the mechanical parameters of the material. The mechanical characterization of materials was carried out through destructive tests on samples, taken directly on site, and micro-destructive tests through single and double flat jacks. To give a first qualitative assessment of overall was used sonic test (non-destructive test) on the main macro-structure. The global structural health monitoring (SHM) was carried out through ambient vibrations to define the real dynamic behavior in serviceability state and to calculate - via a modal identification of output-only systems-the dynamic parameters (mode of vibration, frequencies, displacements and damping ratios). The aim of this research is to prove the reliability of different diagnostic methodologies, the real extent of global and local damage and the extent of the residual stiffness of the macro elements of the structures (façade, tower, walls of nave, transept) that are subjected to different mechanism of failure.

2008 ◽  
Vol 52 (01) ◽  
pp. 45-56
Author(s):  
Giuliano Coppotelli ◽  
Daniele Dessi ◽  
Riccardo Mariani ◽  
Marcello Rimondi

The study of the ship structural response assumes an increasing importance as soon as the structures, characterized by much more lightness, are designed and built for faster vessels. This requisite implies a greater flexibility of the structures themselves, the elastic response of which has to be evaluated with accuracy in order to predict the dynamic behavior. In the present paper, a methodology for the identification of the modal parameters from the measurement of only the responses of a vibrating structure has been developed and applied to an elastically scaled model. This output-only technique is successfully applied to the segmented model of a real ship towed in the INSEAN linear basin. The broadband random excitation, provided by the loads exerted by an irregular sea pattern, induces a stochastic response of the model, which is monitored with accelerometers. The obtained results not only outline the parametric dependence of the modal properties on the ship speed, but also suggest a possible practical application of this technique for on-board structural monitoring and fatigue-life prediction.


2013 ◽  
Vol 778 ◽  
pp. 757-764 ◽  
Author(s):  
Francesca Lanata

Structural design, regardless of construction material, is based mainly on deterministic codes that partially take into account the real structural response under service and environmental conditions. This approach can lead to overdesigned (and expensive) structures. The differences between the designed and the real behaviors are usually due to service loads not taken into account during the design or simply to the natural degradation of materials properties with time. This is particularly true for wood, which is strongly influenced by service and environmental conditions. Structural Health Monitoring can improve the knowledge of timber structures under service conditions, provide information on material aging and follow the degradation of the overall building performance with time.A long-term monitoring control has been planned on a three-floor structure composed by wooden trusses and composite concrete-wood slabs. The structure is located in Nantes, France, and it is the new extension to the Wood Science and Technology Academy (ESB). The main purpose of the monitoring is to follow the long-term structural response from a mechanical and energetic point of view, particularly during the first few service years. Both static and dynamic behavior is being followed through strain gages and accelerometers. The measurements will be further put into relation with the environmental changes, temperature and humidity in particular, and with the operational charges with the aim to improve the comprehension of long-term performances of wooden structures under service. The goal is to propose new improved and optimized methods to make timber constructions more efficient compared to other construction materials (masonry, concrete, steel).The paper will mainly focus on the criteria used to design the architecture of the monitoring system, the parameters to measure and the sensors to install. The first analyses of the measurements will be presented at the conference to have a feedback on the performance of the installed sensors and to start to define a general protocol for the Structural Health Monitoring of such type of timber structures.


Author(s):  
Weiguo Zhang ◽  
Huiqing Qiu ◽  
Kailiang Lu ◽  
Zhiyong Hao ◽  
Yuan Liu

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Sin-Chi Kuok ◽  
Ka-Veng Yuen

The goal of this study is to investigate the structural performance of reinforced concrete building under the influence of severe typhoon. For this purpose, full-scale monitoring of a 22-story reinforced concrete building was conducted during the entire passage process of a severe typhoon “Vicente.” Vicente was the eighth tropical storm developed in the Western North Pacific Ocean and the South China Sea in 2012. Moreover, it was the strongest and most devastating typhoon that struck Macao since 1999. The overall duration of the typhoon affected period that lasted more than 70 hours and the typhoon eye region covered Macao for around one hour. The wind and structural response measurements were acquired throughout the entire typhoon affected period. The wind characteristics were analyzed using the measured wind data including the wind speed and wind direction time histories. Besides, the structural response measurements of the monitored building were utilized for modal identification using the Bayesian spectral density approach. Detailed analysis of the field data and the typhoon generated effects on the structural performance are discussed.


2016 ◽  
Vol 30 (7) ◽  
pp. 2941-2951 ◽  
Author(s):  
Yi Jin ◽  
Shaoqian Qin ◽  
Jie Guo ◽  
Chang’an Zhu

Sign in / Sign up

Export Citation Format

Share Document