Effect of Lithium Difluoro(oxalato)Borate-Based Electrolyte on the Performance of LiNi0.5Mn1.5O4 for High-Voltage Lithium-Ion Batteries
LiNi0.5Mn1.5O4is a promising 5 V class anode material for high power applications; however, before applying in lithium-ion batteries, it is necessary to find more appropriate electrolyte systems to exert the perfect electrochemical performance of LiNi0.5Mn1.5O4. In this paper, the electrochemical performances of lithium difluoro (oxalato) borate (LiODFB)-sulfolane (SL)/dimethyl carbonate (DMC) electrolyte are investigated. It shows high oxidation potentials (>5.4 V) and satisfactory conductivities. When used in LiNi0.5Mn1.5O4/Li cells, compared to the cell with the electrolyte system of LiPF6-ethylene carbonate/DMC, LiODFB-SL/DMC electrolyte exhibits more stable cycle performance and higher discharge voltage plateau (>4.64 V).