Compatibilities between Lithium Bis(Oxalate)Borate-Based Electrolyte and LiFePO4, LiMn2O4 or LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries

2014 ◽  
Vol 953-954 ◽  
pp. 1022-1025 ◽  
Author(s):  
Shi You Li ◽  
Jin Liang Liu ◽  
Xiao Ling Cui ◽  
Li Ping Mao

Olivine-type LiFePO4 and crystal structure LiMn2O4 or LiNi0.5Mn1.5O4 are promising cathode materials for electric vehicles (EVs) applications. To find more appropriate electrolyte systems to exert the perfect electrochemical performance of LiFePO4, LiMn2O4 and LiNi0.5Mn1.5O4 cathodes, the electrochemical performances of LiBOB-ethylene carbonate (EC)/ethyl methyl carbonate (EMC)/diethyl carbonate (DEC) electrolyte are investigated in this paper. In LiFePO4/Li, LiMn2O4/Li and LiNi0.5Mn1.5O4/Li cells, this novel electrolyte exhibits several advantages, such as stable cycle performance and good rate performance. It suggests that LiBOB-EC/EMC/DEC electrolyte has good compatibility with the three kinds of cathodes, and would be an attractive electrolyte for lithium-ion batteries based upon LiFePO4, LiMn2O4 and LiNi0.5Mn1.5O4 cathodes.

2013 ◽  
Vol 842 ◽  
pp. 3-6
Author(s):  
Xiao Peng Li ◽  
Xiao Ling Cui ◽  
Man Yun Wang ◽  
Xiu Xiu Wang

LiNi0.5Mn1.5O4is a promising 5 V class anode material for high power applications; however, before applying in lithium-ion batteries, it is necessary to find more appropriate electrolyte systems to exert the perfect electrochemical performance of LiNi0.5Mn1.5O4. In this paper, the electrochemical performances of lithium difluoro (oxalato) borate (LiODFB)-sulfolane (SL)/dimethyl carbonate (DMC) electrolyte are investigated. It shows high oxidation potentials (>5.4 V) and satisfactory conductivities. When used in LiNi0.5Mn1.5O4/Li cells, compared to the cell with the electrolyte system of LiPF6-ethylene carbonate/DMC, LiODFB-SL/DMC electrolyte exhibits more stable cycle performance and higher discharge voltage plateau (>4.64 V).


RSC Advances ◽  
2015 ◽  
Vol 5 (98) ◽  
pp. 80150-80157 ◽  
Author(s):  
Vadim Kraft ◽  
Waldemar Weber ◽  
Martin Grützke ◽  
Martin Winter ◽  
Sascha Nowak

In this work, the thermal decomposition of a lithium ion battery electrolyte (1 M LiPF6 in ethylene carbonate/ethyl methyl carbonate, 50/50 wt%) with a focus on the formation of organophosphates was systematically studied.


2021 ◽  
Vol 494 ◽  
pp. 229760
Author(s):  
Hailemariam Kassa Bezabh ◽  
Shuo-Feng Chiu ◽  
Teklay Mezgebe Hagos ◽  
Meng-Che Tsai ◽  
Yosef Nikodimos ◽  
...  

2012 ◽  
Vol 519 ◽  
pp. 156-159 ◽  
Author(s):  
Shi You Li ◽  
Yang Yu Zhao ◽  
Wei Zhao ◽  
Xiao Ling Cui

LiNi0.5Mn1.5O4 is a promising 5 V class anode material for high power applications, however, before applying in lithium-ion batteries, it is necessary to find more appropriate electrolyte systems to exert the perfect electrochemical performance of LiNi0.5Mn1.5O4. In this paper, the electrochemical performances of LiBOB-propylene carbonate (PC)/dimethyl carbonate (DMC) electrolyte are investigated. It shows high oxidation potentials (>5.5 V) and satisfactory conductivities, When used in LiNi0.5Mn1.5O4/Li cells, compared to the cell with the electrolyte system of LiPF6-ethylene carbonate (EC)/dimethyl carbonate (DMC) electrolyte, LiBOB-PC/DMC electrolyte exhibit several advantages, such as more stable cycle performance, higher discharge voltage plateau (>4.64 V), higher coulomb efficiency, and higher mean voltage (4.55 V).


Scanning ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Dawei Cui ◽  
Jinlong Wang ◽  
Ailing Sun ◽  
Hongmei Song ◽  
Wenqing Wei

Discharge rate is a key parameter affecting the cycle life of lithium-ion batteries (LIB). Normally, lithium-ion batteries deteriorate more severely at a higher discharge rate. In this paper, we report that the cycle performance of LiNi0.8Co0.15Al0.05O2/graphite high-energy 2.8 Ah 18650 cells is abnormally worse at a 1.5 C discharge rate than at a 2.0 C discharge rate. Combining macromethods with micromethods, the capacity/rate performance, electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) morphology of the electrodes are systematically investigated. We have found that the impedance of the negative electrodes after 2.0 C aged is smaller than that after 1.5 C aged, through EIS analysis, and the discharge rate performance of the negative electrodes after 2.0 C aged is better than that after 1.5 C aged through coin cell analysis. In addition, some special microcracks in the negative electrodes of aged cells are observed through SEM analysis, which can accelerate the side reaction between active and electrolyte and form the thicker SEI which will hinder the Li+ insertion and cause resistance increase. In short, the LiNi0.8Co0.15Al0.05O2/graphite-based lithium-ion batteries show better cycle life at a 2.0 C discharge rate than at a 1.5 C discharge rate which indicates that the negative electrodes contribute more than the positive electrodes.


2015 ◽  
Vol 1094 ◽  
pp. 209-213
Author(s):  
Hui Feng Li ◽  
Gen Ban Sun ◽  
Qiang Wang ◽  
Lin Na Sun ◽  
Fun Bin Jiang

Safety is the key-feature of high energy density lithium-ion batteries and thermal stability of the electrolytes is crucial. In this work, the thermal and flammability properties of mixed electrolytes based on the conventional ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) (1:1:1 v/v/v), 1M LiPF6 and the hydrophobic ionic liquid (IL) N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (Pp13TFSI) have been investigated. The mixed electrolyte is observed to be nonflammable at the Pp13TFSI contents of more than 40 vol.%. And physical and electrochemical characteristics of high energy density lithium ion batteries based on Li [Li0.2Mn0.54Ni0.13Co0.13]O2 as the cathode and artificial graphite as the anode with mixed electrolyte are also investigated. The cell of graphite/ Li [Li0.2Mn0.54Ni0.13Co0.13]O2 with 1 mol/L LiPF6/40%Pp13TFSI + 60% (EC+DMC+EMC) (1/1/1,v/v/v) electrolyte shows first charge capacity of 313.8 mAh g-1 and discharge capacity of 201.8 mAh g-1, respectively. Moreover, the nail penetration tests are carried out on the charged lithium-ion cells after formation, and the results show no explosion, ignition, or thermal runaway. These results suggest that the IL has potential to improve the safety of lithium ion batteries and can be used to fabricate the high energy density lithium ion batteries for electric vehicles and hybrid electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document