Finite Element Analysis on the Directly Buried Heating Bent Pipeline with Many Break Angles

2013 ◽  
Vol 842 ◽  
pp. 415-419
Author(s):  
Bao Xian Qian ◽  
Fei Wang ◽  
Guo Wei Wang

In order to get the optimal design scheme of a directly buried heating bent pipeline with many fold angles in a certain practical engineering, this paper simulated the pipeline by the ANSYS finite element analysis software.Through applying different boundary conditions to the model, the stress was analyzed, the destroy forms of the pipeline and the positions of stress danger points were determined,and the fatigue life was checked according to BS EN. Compared with the current design method,adopting numerical simulation analysis method has greatly reduced the number of the usage of compensators and fixed piers, broke through the restrictions for larger fold angle in the standard,and at the same time, it has reduced the construction difficulties and the engineering investment,improved the reliability of the network,this paper has guiding significance to the engineering practice.

Because of environmental issues, the regulations on gas emission from fossil fuels become stricter. Some investigations are being carried out actively to change the fossil fuel power into electrical power. Researches on the reduction of weight in the transportation machine is also executed. Weight reduction is one of the methods of reducing the gas emission and increasing the range of electrically powered machines. The method of weight reduction includes the development of light weight material and light weight structure design method. FRP is the most representative light weight material. Among various FRP materials, (CFRP) has the highest specific strength. Light weight structure design method includes the method of designing the structure by converting the bonding method with bolts and rivets to adhesion method with the use of adhesives. In order to pursue the research on the adhesive structure design method, the research on adhesion exfoliation by using CZM needs to be carried out. There are the researches with various methods in accordance with the style of adhesion exfoliation load and material designs. In this study, the adhesion exfoliation on the tearing fracture of tapered double cantilever beam configuration was applied to the research. Research model was composed by applying the gradient angles of 6° and 8° to TDCB. The model with the gradient angle of 8° has less fracture due to adhesion than that of 8°. The basic data on structural design of adhesion structure were provided by comparatively analyzing the research models. This research was carried out by using finite element analysis method in this study. Finite element analysis method has the advantage of reducing the cost and time taken for experiments in researches. Therefore, the finite element analysis program, ANSYS, was used in this study.


2021 ◽  
Vol 5 (1) ◽  
pp. 69-80
Author(s):  
Aditya Arvind Yadav ◽  
Pravin A. Prabhu ◽  
Jaydeep S. Bagi

The word greenhouse dryer is used for a building which is highly glazed with thermal conditioning for desired range and it is used for cultivating crops, plants, vegetables, etc. The actual working of a greenhouse is that the short-wave radiations falling on the greenhouse are absorbed by the outer glazing material thereby heating the interior area of greenhouse and providing ambient heat for plants, vegetables growth respectively. The heated space is retained within the enclosure of greenhouse. This phenomenon is called as greenhouse effect. The important role played during the greenhouse effect phenomenon are atmosphere, insulating roofs, walls, etc. The current study focuses on the numerical and experimental validation of Solar Greenhouse which is utilized for drying phenomenon. The numerical simulation is performed using Finite Element Analysis method. The various roof shapes have been incorporated to have emphasis on maximum solar gain to drying phenomenon.


2014 ◽  
Vol 494-495 ◽  
pp. 373-376
Author(s):  
Zheng Yan Dong ◽  
Han Long Zhang

This study investigated the wind turbine blade root bolt static strength using the full scale static test, selected the root bolts of 1/4 bridge strain gauge using the finite element analysis method and the dynamic and static strain instrument. The data of the stress loading combined tension and bending bolt were obtained.


1990 ◽  
Vol 196 ◽  
Author(s):  
Zhang Kaifeng ◽  
Z. R. Wang ◽  
Guo Dianjian ◽  
Xu Yanwu

ABSTRACTIn this paper, the superplastic and isothermal hobbing process for manufacturing die cavities is described. The technical parameters, the design method of the set-up and the lubrication are also mentioned. Recently, these technologies have been applied in hobbing automobile link rod dies and other parts. By means of finite element analysis and experiments, the deformation paramaters for superplastic hobbing are obtained. They can be used in determining the process and choosing the blank sizes.


2011 ◽  
Vol 90-93 ◽  
pp. 1720-1725
Author(s):  
Si Tian Chen ◽  
Ting Ting Yang ◽  
Li Qun Wu

The numerical simulation analysis, by using senior nonlinear finite element analysis software MSC.Marc, was achieved in this paper for the tie-replacing procedures of a steel tube tied-arch filled with concrete. Through this analysis, the control parameters were accurately determined for the installing of new ties and the removing of old ties. Results of numerical analysis ensured the bridge structure stable during the replacement, made the construction of safe and convenient, and played a guiding role in the maintenance and reinforcement. The successful experience could be referenced by other similar projects.


2014 ◽  
Vol 940 ◽  
pp. 236-240
Author(s):  
Hong Fei Luo ◽  
Jian Cheng Wang ◽  
Jie Lei ◽  
Qing Bin Cui

During type test experiment of loading mechanism, there exist a problem of deformation and cracking, in order to solve this problem, movement of cylinder under the action of gas source is analyzed by numerical simulation, based on this, use finite element analysis to execute dynamics simulation analysis, the effect of high-speed collisions when loading mechanism work it bring to cylinder bracket is analyzed, and the reason of cylinder bracket crack is find out. The modify method is put forward, it is proved by experiment that, after modify, the working reliability is significantly improved.


2012 ◽  
Vol 204-208 ◽  
pp. 4396-4399 ◽  
Author(s):  
Guo Liang Tian ◽  
Yin Wang

Cement hydration heat temperature of the concrete could result thermal stress. Which is an important reason for the concrete structure’ cracks. The cracks could reduce the structure’ durability and structural stability. A spatial finite element model analysis on a mass concrete foundation board of a project was established using large-scale finite element analysis software. Temperature stress finite element analysis was carried on model. Numerical simulation analyzed the hydration heat of mass concrete construction phase and calculated the mass concrete’ temperature and stress distribution. Results of numerical simulation of crack control had certain guiding significance to mass concrete construction.


2007 ◽  
Vol 340-341 ◽  
pp. 1291-1296 ◽  
Author(s):  
Sayuri Kimoto ◽  
Fusao Oka ◽  
Young Seok Kim ◽  
Naoaki Takada ◽  
Yosuke Higo

We propose a thermo-hydro-mechanically coupled finite element analysis method for clay with a thermo-elasto-viscoplastic model. The volume changes in soil particles and pore fluids are introduced into the analysis method. The instability of the problem is studied and a numerical simulation of the thermal consolidation is presented using the newly developed analysis method. It was confirmed that the analysis method can reproduce the thermal consolidation phenomenon well.


2014 ◽  
Vol 721 ◽  
pp. 96-99
Author(s):  
Ming Qiang Li ◽  
Fei Wang ◽  
Guo Wei Wang ◽  
Yong Gang Lei

In order to improve Z-shaped pipe in the directly buried heat-supply pipeline with large diameter stress calculations, guiding the engineering design when the short arm length is less than two times the elastic arms length. The author used ANSYS software to numerical simulation analysis on Z-shaped pipe in the directly buried heat-supply pipeline of DN800, DN1000, DN1200, when the long arm length of 50 m, 100 m, 150 m, and the short arm length from two times to one times of the elastic arm length. Applying boundary conditions in different models with the short arm length shortens the process to Z-shaped pipe of the elbow stress. For Z-shaped pipe in the directly buried heat-supply pipeline the short arm from two times to one times of the elastic arm length, the elbow’s stress value is the minimum when the short arm length is 1.2 times of the elastic arm length. This article breaks the specification limits on the short arm length, improving the flexibility of directly buried heat-supply pipeline with large diameter, reducing the difficulty of construction, and it’s important for guiding the actual project.


2011 ◽  
Vol 117-119 ◽  
pp. 212-216
Author(s):  
Xue Yong Chen ◽  
Ning Zhao

Abstract. This paper introduces an architecture design of airborne equipment integrated mounting shelf, including constitution of mounting shelf, design method, vibration isolation design,finite element analysis and calculation, etc. Mounting interface between mounting shelf and airborne aircraft is complicated; weight is limited; load on mounting shelf is big and mechanically severe environment must be met. Through dedicated design and simulation analysis, this product has passed each item of airborne environment tests and equipped in military.


Sign in / Sign up

Export Citation Format

Share Document