Effect Factors Study on Ultimate Strength of Aluminum Stiffened Plates under Cyclic Loading

2014 ◽  
Vol 904 ◽  
pp. 132-136
Author(s):  
Hu Wei Cui ◽  
Ping Yang ◽  
Liang Zhou ◽  
Can Shen ◽  
Xiao Jing Chen

Nonlinear finite element method is used in this paper to research the ultimate strength characteristics of aluminum stiffened plates under uniaxial tension-compression cyclic loading. This paper focused on the effect of the distribution mode of HAZ, the range of HAZ and different cyclic loading process on the ultimate strength of aluminum stiffened plates. The results obtained have a certain reference value to the design and manufacture of aluminum stiffened plates.

2014 ◽  
Vol 904 ◽  
pp. 446-449
Author(s):  
Hu Wei Cui ◽  
Ping Yang ◽  
Can Shen ◽  
Liang Zhou

This paper adopts nonlinear finite element method to study the load bearing behavior of ship stiffened plates with different dimensions. The research focuses on the compressive ultimate strength, axial rigidity, and residual plastic deflection of the stiffened plates under cyclic compressive and tensile loads. The results indicate that the compressive ultimate strength and axial rigidity of stiffened plates decrease with the incremental cyclic loads significantly, meanwhile, the residual plastic deflection increases with the cyclic loads.


Author(s):  
Pengfei Li ◽  
Fuquan Hu ◽  
Xuwei Wang ◽  
Zheng He ◽  
Zhi Gang

Focusing on the general and localized elastoplastic buckling of the cylindrical section of steel containment under axial pressure, nonlinear finite element method (FEM) and small-scaled experiments are applied to analysis. First, FEM analysis is conducted considering nonlinear items caused by geometric shape imperfection and elastoplastic constitutive model by the arc-length method RIKS procedure. Parameter sensitivity of the buckling is revealed. Then, small-scaled experiments are carried out. Buckles status is observed, and key geometrical parameters’ influence are found. The results show that cylindrical buckling under axial pressure is sensitive to geometrical parameters and imperfection. It is necessary to employ more realistic parameters to the FEM analysis via accurate geometrical measurement. This research has reference value for the design and fabrication of AP series steel containment vessel.


Author(s):  
Jeom Kee Paik ◽  
Jung Min Sohn

The primary objective of the present paper is to examine the effects of welding residual stresses on ultimate strength of high tensile steel plates under axial compression in terms of their magnitude and pattern. The ANSYS nonlinear finite element method is employed for the purpose. The secondary objective of the present paper is to study a nonlinear finite element method modeling technique for welded plate structures with residual stresses. Three levels of residual stresses, namely slight, average, and severe, are considered. As another important parameter of influence on the plate ultimate strength, the plate thickness is also varied in the numerical computations to examine their role and trend. Important insights and conclusions developed from the present study are documented.


2004 ◽  
Vol 48 (03) ◽  
pp. 191-201
Author(s):  
Koji Masaoka ◽  
Alaa Mansour

A simple design equation for predicting the ultimate compressive strength of unstiffened plates with misalignment, initial deflection, and welding residual stresses is developed in this study. A nonlinear finite element method is used to investigate the ultimate strength of the imperfect plate. The method incorporates both geometric and material nonlinearity. Buckling and plasticity behavior of the plate can be expressed using this finite element system. The results from the finite element method and an analytical method using large deflection theory together with rigid-plastic theory are compared. It was found that the analytical method using large deflection and rigid-plastic theory is not always accurate. Reduction factors of the ultimate strength due to welding residual stresses and initial deflection are generated from the results of the nonlinear finite element method. A new equation for ultimate strength of imperfect plates was developed using these reduction factors. The accuracy of the proposed new equation is confirmed by comparing it with the finite element results.


Author(s):  
Jeom Kee Paik ◽  
Bong Ju Kim ◽  
Jung Min Sohn ◽  
Sung Hoon Kim ◽  
Jae Min Jeong ◽  
...  

The primary objective of the present paper is to experimentally examine buckling collapse characteristics of fusion welded aluminum-stiffened plate structures under axial compression until and after the ultimate limit state is reached. The secondary objective of the paper is to study a nonlinear finite element method modeling technique for computing the ultimate strength behavior of welded aluminum structures. A set of aluminum-stiffened plate structures fabricated by gas metal arc welding (GMAW) is studied. The test structure is equivalent to a full scale deck structure of an 80m long high speed vessel. Plate part of the structures is made of 5383-H116 aluminum alloy while extruded stiffeners are made of 5083-H112 aluminum alloy. Welding induced initial imperfections such as plate initial deflection, column type global initial deflection of stiffeners, sideways initial distortion of stiffeners, welding residual stresses, and softening in the heat-affected zone are measured. The ANSYS nonlinear finite element method is employed for the numerical computations of the test structure’s ultimate strength behavior by a comparison with experimental data. Insights and conclusions developed from the present study are documented.


Author(s):  
Jeom Kee Paik ◽  
Jung Min Sohn

The primary objective of the present paper is to examine the effects of welding residual stresses on ultimate strength of high tensile steel plates under axial compression in terms of their magnitude and pattern. The ANSYS nonlinear finite element method is employed for the purpose. The secondary objective of the present paper is to study a nonlinear finite element method modeling technique for welded plate structures with residual stresses. Three levels of residual stresses, namely slight, average and severe levels are considered. As another important parameter of influence on the plate ultimate strength, the plate thickness is also varied in the numerical computations to examine their role and trend. Important insights and conclusions developed from the present study are documented.


Author(s):  
Jeom Kee Paik ◽  
Bong Ju Kim ◽  
Jung Min Sohn ◽  
Sung Hoon Kim ◽  
Jae Min Jeong ◽  
...  

The primary objective of the present paper is to experimentally examine the buckling collapse characteristics of fusion welded aluminum-stiffened plate structures under axial compression until and after the ultimate limit state is reached. The secondary objective of the paper is to study a nonlinear finite element method modeling technique for computing the ultimate strength behavior of welded aluminum structures. A set of aluminum-stiffened plate structures fabricated via gas metal arc welding is studied. The test structure is equivalent to a full scale deck structure of an 80 m long high speed vessel. The plate part of the structures is made of 5383-H116 aluminum alloy, and extruded stiffeners are made of 5083-H112 aluminum alloy. Welding induced initial imperfections such as plate initial deflection, column type global initial deflection of stiffeners, sideways initial distortion of stiffeners, welding residual stresses, and softenng in the heat-affected zone are measured. The ANSYS nonlinear finite element method is employed for the numerical computations of the test structure’s ultimate strength behavior by means of a comparison with experimental data. Insights and conclusions developed from the present study are documented.


2014 ◽  
Vol 919-921 ◽  
pp. 177-182
Author(s):  
Van Tan Vu ◽  
Wei Guo Wu

In this paper, the ultimate strength of open box girders with pure torque, bending moment and combined loads are investigated using a commercial FEA program, ABAQUS. It studies the ultimate strength bending moment of Nishihara open box girders model. This paper mainly analyzes the influence of the ultimate bending moment on the open box girders by the finite element mesh, bounding conditions of the open box girders and the initial deflection.


Sign in / Sign up

Export Citation Format

Share Document