The Finite Element Analysis on Seismic Performance of Ring Beam and Constructional Column with Different Storey in Masonry Building

2014 ◽  
Vol 919-921 ◽  
pp. 1016-1019 ◽  
Author(s):  
Xue Yu Xiong ◽  
Rong Jun Xue ◽  
Sen Zhang ◽  
Li Jun Wang

The masonry building takes a majority of town housings in these areas. Unlike the experimental study, the Finite Element Analysis is an important part for better comprehension of the finite element method and can reduce the investment and manpower. The aim of this paper is to simulate the structural response from the variety of masonry buildings under earthquake excitations by using finite element software called ABAQUS. There are four models of the masonry building with different storey, which include the one without constructional column and ring beam, with constructional column only, with ring beam only and with constructional column and ring beam simultaneously. In the process of modeling, we adopt the integrated model and regard walls, constructional columns, slabs and steels as homogenous continuums. Furthermore, we adopt concrete damaged plasticity material model to simulate the material of building and input El Centro earthquake wave N-S component. The result of analysis shows that setting ring beams or constructional columns can significantly improve the integrity of the building and reduce the mises stress on foundation. The result of analysis has a significant guidance on masonry building construction in seismic region.

Author(s):  
Siham Ouhimmou

Uncertainty modelling with random variables motivates the adoption of advanced PTM for reliability analysis to solve problems of mechanical systems. Probabilistic transformation method (PTM) is readily applicable when the function between the input and the output of the system is explicit. When these functions are implicit, a technique is proposed that combines finite element analysis (FEA) and probabilistic transformation method (PTM) that is based on the numerical simulations of the finite element analysis (FEA) and the probabilistic transformation method (PTM) using an interface between finite element software and Matlab. Structure problems are treated with the proposed technique, and the obtained results are compared to those obtained by the reference Monte Carlo method. A second aim of this work is to develop an algorithm of global optimization using the local method SQP. The proposed approach MSQP is tested on test functions comparing with other methods, and it is used to resolve a structural problem under reliability constraints.


2012 ◽  
Vol 204-208 ◽  
pp. 410-413
Author(s):  
Shi Lun Feng ◽  
Jun Li ◽  
Pu Lin Li

The active earth pressure on rigid retaining wall is analyzed using the finite element software ABAQUS. The fill behind the wall is sand and the Mohr–Coulomb constitutive model was used to model the stress–strain behaviour of soils.The finite element analysis results were compared with the Rankine results. The maximum error of the results is about 10% and the finite element analysis result is bigger. So the result obtained from the finite element method could safely be used in actual projects.


2009 ◽  
Vol 09 (01) ◽  
pp. 85-106
Author(s):  
N. PRASAD RAO ◽  
S. J. MOHAN ◽  
R. P. ROKADE ◽  
R. BALA GOPAL

The experimental and analytical behavior of 400 kV S/C portal-type guyed towers under different loading conditions is presented. The portal-type tower essentially consists of two masts extending outward in the transverse direction from the beam level to the ground. In addition, two sets of guys connected at the ground level project outward along the longitudinal axes and converge in the transverse axes. The experimental behavior of the guyed tower is compared with the results of finite element analysis. The 400 kV portal-type guyed towers with III and IVI type insulator strings are analyzed using finite element software. Full scale tower test results are verified through comparison with the results of the finite element analysis. The initial prestress in the guys is allowed to vary from 5% to 15% in the finite element modeling. The effect of prestress variation of the guys on the tower behavior is also studied.


2013 ◽  
Vol 483 ◽  
pp. 297-300
Author(s):  
Jia Qi Jin ◽  
Ye Yuan ◽  
Xian Rong Wang

Based on the finite element analysis of the slip coat in the compulsory lifting system of hyper-thermal snubbing operation injected by steam, the static analysis with regard to the slip coat is undoubtedly employed taking advantage of the finite element software. And then, the failure forms are deduced and the maximum allowable stress is calculated by analyzing the stress distribution.


2007 ◽  
Vol 348-349 ◽  
pp. 761-764
Author(s):  
Tai Quan Zhou ◽  
Yuan Hua ◽  
Tommy Hung Tin Chan

The finite element analysis fully coupled fatigue damage evolution is implemented on the user subroutine UMAT of the finite element software ABAQUS. The fully coupled method developed with damage mechanics and the finite element analysis is performed on calculation of fatigue damage accumulation of the critical welded member in the Tsing Ma Bridge. The calculated result shows that the fatigue damage in the critical welded member is accumulated in the region of toe of welding. The value of faitgue life calculated by the fully coupled method is smaller than that by the uncoupled method, which suggests that there exists interaction between the fatigue damage evolution and the structural response. The linear Miner’s Law is widely used however conservative for the evaluation of fatigue life of bridge on service. The above results provide feasible method for accurate evaluation of fatigue damage in bridge components based on the hot spot stress analysis and the damage mechanics theory.


2010 ◽  
Vol 450 ◽  
pp. 119-123 ◽  
Author(s):  
Kemal Çalışkan ◽  
Erhan Ilhan Konukseven (1) ◽  
Y. Samim Ünlüsoy

The basic problem in the finite element analysis of parts made of hyperelastic materials is the identification of mathematical material model coefficients. Furthermore, selection of a suitable mathematical hyperelastic material model may not be straightforward. In this study, a systematic design methodology is presented for hyperelastic suspension jounce bumpers. The presented methodology involves a critical examination of material testing procedures, material model selection, and coefficient identification. The identified material model coefficients are verified through comparison of the finite element analysis results with actual tests.


2021 ◽  
Vol 2 (3) ◽  
pp. 1-7
Author(s):  
Tirimisiyu Abiodun Buari

This research investigated the comparative structural response of a straight and curved continuous bridge deck subjected to realistic working loads. The study involved examining the variance in analysis results obtained while utilizing the grillage and finite element methods for an idealized bridge deck. The combined impact of continuity at the intermediate support and the curvature on the overall structure was examined. The idealized case study is a 45m two-span continuous bridge deck with a 22.5m straight span and an equivalent 22.5m curved span with a centerline radius of approximately 14.32m. The bridge deck was designed for design dead load and 45 units of HB load, these loads were computed based on recommendations given in BS 5400-2:2006 and BD 37/01-1:2001[1,2]. For the Grillage Analysis Sap2000 version 22 software was utilized while CSI Bridge version 21 was used to simulate the Finite Element model. The findings from the study revealed that the results obtained from the grillage analysis method were more conservative with respect to midspan sagging moments and support shear force. However, the finite element analysis result was more conservative for support hogging moments, deflection and torsional moments. It was concluded that finite element analysis result values differed from the grillage analysis, but the values were close enough with the disparity not calling for serious concerns.


2018 ◽  
Vol 775 ◽  
pp. 554-559 ◽  
Author(s):  
Ravivat Rugsaj ◽  
Chakrit Suvanjumrat

This research aimed to find an appropriated hyperelastic material model for the finite element analysis (FEA) of a non-pneumatic tire (NPT). The innovative method involving water jet cutting technique was performed to prepare the tensile and compressive test specimens from the non-pneumatic tire, TWEEL, which was developed by Michelin. The stress-strain relationship of material testing results was fitted to select the suitable constitutive model. The FEA was performed and compared to the physical experiment to validate the hyperelastic material model. The suitable hyperelastic material model can be used in the development of NPT for the further work.


Sign in / Sign up

Export Citation Format

Share Document