A Study on Effective Strains in Different FRP Shear Strengthening Schemes for Analytical Optimized Truss Models

2014 ◽  
Vol 935 ◽  
pp. 168-171
Author(s):  
Hor Yin ◽  
Wee Teo

This paper presents an optimized truss model based on the principle of minimum total energy theorem. Six most recent effective strain ɛfrp,e models including three design guidelines were selected for the analysis. Three reinforced concrete beams strengthened with different fiber reinforced polymer (FRP) schemes were chosen. Comparing with current design guidelines, the results of these three beams indicate that the optimized model is promising and encouraging.

2018 ◽  
Vol 37 (10) ◽  
pp. 685-700 ◽  
Author(s):  
Weiwen Li ◽  
Chengyue Hu ◽  
Zejie Pan ◽  
Wei Peng ◽  
Yong Yang ◽  
...  

Many factors can affect the shear capacity of fiber-reinforced polymer in reinforced concrete beams shear-strengthened with externally bonded fiber-reinforced polymer composites. Undoubtedly, the interaction of concrete-stirrup-fiber-reinforced polymer system is one of the key factors. However, most of the existing fiber-reinforced polymer design guidelines do not take account of this important factor on predicting fiber-reinforced polymer shear capacity. This study provides an advanced strengthening model that comprehensively considers the interaction among concrete, stirrup, and fiber-reinforced polymer for calculating the fiber-reinforced polymer effective strain. The advanced strengthening model provides a more accurate prediction for the fiber-reinforced polymer shear contribution compared with existing design guidelines.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 696 ◽  
Author(s):  
Alireza Javadian ◽  
Ian F. C. Smith ◽  
Dirk E. Hebel

Reinforced concrete is the most widely used building material in history. However, alternative natural and synthetic materials are being investigated for reinforcing concrete structures, given the limited availability of steel in developing countries, the rising costs of steel as the main reinforcement material, the amount of energy required by the production of steel, and the sensitivity of steel to corrosion. This paper reports on a unique use of bamboo as a sustainable alternative to synthetic fibers for production of bamboo fiber-reinforced polymer composite as reinforcement for structural-concrete beams. The aim of this study is to evaluate the feasibility of using this novel bamboo composite reinforcement system for reinforced structural-concrete beams. The bond strength with concrete matrix, as well as durability properties, including the water absorption and alkali resistance of the bamboo composite reinforcement, are also investigated in this study. The results of this study indicate that bamboo composite reinforced concrete beams show comparable ultimate loads with regards to fiber reinforced polymer (FRP) reinforced concrete beams according to the ACI standard. Furthermore, the results demonstrate the potential of the newly developed bamboo composite material for use as a new type of element for non-deflection-critical applications of reinforced structural-concrete members. The design guidelines that are stated in ACI 440.1R-15 for fiber reinforced polymer (FRP) reinforcement bars are also compared with the experimental results that were obtained in this study. The American Concrete Institute (ACI) design guidelines are suitable for non-deflection-critical design and construction of bamboo-composite reinforced-concrete members. This study demonstrates that there is significant potential for practical implementation of the bamboo-composite reinforcement described in this paper. The results of this study can be utilized for construction of low-cost and low-rise housing units where the need for ductility is low and where secondary-element failure provides adequate warning of collapse.


Sign in / Sign up

Export Citation Format

Share Document