Deep Desulfurization of Diesel Fuel Oxidized with H2O2 Coupled with Solvent Extraction Intensified by Ultrasound

2014 ◽  
Vol 953-954 ◽  
pp. 1135-1138 ◽  
Author(s):  
Guo Xian Yu ◽  
Qian Zhong ◽  
Mei Jin ◽  
Jin Huang Wang ◽  
Ping Lu

Deep desulfurization of a hydrotreated diesel fuel was investigated with H2O2oxidation coupled with solvent extraction intensified by ultrasound. The process parameters for the oxidation desulfurization of diesel fuel, such as the type and dosage of catalyst, co-solvent, ultrasound time, molar ratio of H2O2and sulfur were investigated. The results showed that sulfur content of the hydrotreated diesel fuel was reduced from 140 ppm to 10 ppm with using 2%wt of phosphotungstic acid as catalyst, 20%wt of methanol as co-solvent during the reaction, reaction temperature at 90°C, ultrasound time for 10 min and H2O2/S molar ratio of 16, and ultrasound irradiation had the obvious reinforcement in oxidative desulfurization of diesel fuel.

2014 ◽  
Vol 910 ◽  
pp. 57-60
Author(s):  
Guo Xian Yu ◽  
Qian Zhong ◽  
Mei Jin ◽  
Jin Huang Wang ◽  
Ping Lu

Deep desulfurization of a hydrotreated diesel fuel was investigated with TBHP oxidation coupled with solvent extraction intensified by ultrasound. The process parameters for the oxidation desulfurization of diesel fuel, such as the type and dosage of catalyst, co-solvent, ultrasound time, molar ratio of TBHP and sulfur were investigated. The results showed that sulfur content of the hydrotreated diesel fuel was reduced from 140 ppm to 12 ppm with using 1%wt of sodium tungstate as catalyst, 20%wt of methanol as co-solvent during the reaction, reaction temperature at 90°C, ultrasound time for 15 min and TBHP/Sulfur molar ratio of 32, and ultrasound irradiation had the obvious reinforcement in oxidative desulfurization of diesel fuel.


2013 ◽  
Vol 634-638 ◽  
pp. 751-754
Author(s):  
Ming Zhu Sun ◽  
Bing Zhang ◽  
Yong Hong Wu ◽  
Jing Zhu ◽  
De Zhi Zhao

The removal of sulfides (e.g., benzothiophenes) in FCC diesel fuel is the most important issue. Here, sulfides were removed by catalytic oxidation them into sulfones by H2O2-formic acid and solvent extraction induced by ultrasound irradiation. The introduction of ultrasound provides energy for the oxidation reaction, which can assure a complete oxidative desulfurization for sulfides in diesel oil. The effects of extraction solvent, extraction duration, ratio of extractant over extraction times, and oil over extraction times were investigated. Under the optimum condition, the removal efficiency of sulfur compounds and the recovery of the product can amount to 94.2% and above 90%, respectively.


2021 ◽  
Vol 11 (1) ◽  
pp. 104-111
Author(s):  
Jalil H. Kareem

Aqueous carboxylic acids (CA) are generally used as attractive catalytic extractants in the field of desulfurization of petroleum products. In the present study, a triple system consisting of CA-ferric chloride-hydrogen peroxide has been used for the removal of aromatic S-compounds from partially hydrotreated diesel by liquid−liquid oxidative-extraction. The influence of various operating parameters affecting the oxidative desulfurization was experimentally investigated. Formic acid (HCOOH), acetic acid (CH3COOH), and propanoic acid (CH3CH2COOH) as aqueous solutions with hydrogen peroxide and iron(III) chloride (FeCl3) as oxidant and catalytic agent, respectively, were used. All experiments were carried out at 55°C with different oxidant to sulfur mole ratios (nH2O2/nS) (15–36), CA to sulfur mole ratios (nCA/nS) (2–26), and oxidation reaction times (5–25 min). Within 25 min of the treatment, a maximum elimination of aromatic S-compounds of 65.1% was obtained when molar ratio of oxidant to sulfur (nH2O2/nS) was 36 and molar ratio of CA to sulfur (nCA/nS) was 26. Surface tension calculations for the CAs demonstrated that the average void radius of the acids has a pronounced effect on the fitting of S-compounds from diesel fuel into acids and is important to sulfur removal. Further, increasing the desulfurization efficiency was also energetically affected in the presence of ferric halide. The obtention of the sulfur removal ability value was noticeably higher than was achieved by employing similar reaction conditions in the absence of FeCl3.


2014 ◽  
Vol 1033-1034 ◽  
pp. 85-89 ◽  
Author(s):  
Guo Xian Yu ◽  
Qian Zhong ◽  
Mei Jin ◽  
Ping Lu

Ultrasound-assisted oxidative desulfurization (UAODS) of diesel fuel in H2O2/Heteropoly acid/Solvent systems, was investigated. Effects of solvent, catalyst, ultrasound and reaction temperature on the oxidation desulfurization of diesel fuel were investigated. When MPA/oil was 2%wt, methanol/diesel fuel was 20%wt, ultrasound power was 400 W and ultrasound time was 10 min, the sulfur content of diesel fuel was decreased from 211 ppm to 19 ppm. The use of ultrasonic irradiation in H2O2/Heteropoly acid/Solvent system significantly improved the efficiency of the oxidation reaction, and solvent was helpful to make the oxidative reaction happen in the same one phase.


2021 ◽  
pp. 88-96
Author(s):  
D. Muktaly ◽  
◽  
Zh.K. Myltykbaeva ◽  
M.B. Smaiyl ◽  
◽  
...  

Continuous growth in consumption of oil in the world, as well as ever-increasing quality requirements stimulate the search for new scientific and technological solutions to directionally affect the characteristics of petroleum products, including their chemical composition. The advantages of oxidative desulfurization before hydrotreating are the absence of the need to use hydrogen, as well as small capital and energy costs, since the method does not require high temperatures and pressures. The purpose of this work was to study the oxidation process of diesel fuel and to search for the optimal mode of oxidative desulfurization of diesel fuel in the presence of transition metals salts with the addition of mineral acids. The object of the study is a straight-run diesel fraction of the Pavlodar Petrochemical Plant with boiling temperatures of 180-350°C. The oxidation process was carried out with hydrogen peroxide in the presence of salts of the transition metals molybdenum, vanadium and tungsten. The article defined the basic physico-chemical characteristics of straight-run and desulfurized diesel fractions. The optimal catalyst (Na2MoO4) was selected at a molar ratio of metal to sulfur of 1:100 for the oxidation process of straight-run diesel fractions. As a result of oxidative desulfurization of diesel fuel in the presence of sodium molybdenum perox complexes, the total sulfur content decreased by 42.9%, and with the addition of sulfuric acid by 56.5%. An increase in the cetane index from 56.3 to 58.6 was revealed in the presence of sodium molybdate with the addition of sulfuric acid.


2015 ◽  
Vol 17 (2) ◽  
pp. 119 ◽  
Author(s):  
Z.R. Ismagilov ◽  
M.A. Kerzhentsev ◽  
S.A. Yashnik ◽  
S.R. Khairulin ◽  
A.V. Salnikov ◽  
...  

<p>An effective gas-phase oxidative desulfurization (ODS) process was proposed. The process was studied in a laboratory reactor with a proprietary catalyst at 300-400 ºС and ambient pressure with model fuels represented by thiophene, dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) dissolved in octane, isooctane or toluene. The reactivity of different sulfur containing molecules in ODS was shown to increase in the sequence: thiophene &lt; DBT &lt; DMDBT. The main sulfur containing product of oxidation of these compounds was SO<sub>2</sub>. During the gas-phase ODS both processes of sulfur species oxidation and processes of their adsorption were observed and studied. Based on the conducted studies, different ODS process designs comprising its integration with adsorption and regeneration processes and with conventional hydrodesulfurization (HDS) process were proposed. One scheme is based on alternating regimes of ODS and catalyst regeneration in two reactors: sulfur is removed from organic feedstock by oxidation and adsorption in one reactor while simultaneous regeneration of the catalyst that has accumulated sulfur  compounds takes place in another reactor. Two other schemes are based on joint use of ODS and HDS. The conventional HDS process is most effective for removal of low-boiling sulfur containing compounds reactive with respect to hydrogen, while removal of refractory sulfur compounds, such as DMDBT is more easily achieved by gas phase ODS. Thus the combination of these processes is expected to be most efficient for deep desulfurization of diesel fuel.</p>


2011 ◽  
Vol 396-398 ◽  
pp. 1283-1286
Author(s):  
Jian Peng Zhu ◽  
Chun Hu Li ◽  
Jia Ling Chen ◽  
Ying Wei Luo

Abstract. Investigation of polymer resin as catalyst in the oxidative desulfurization (ODS) process has revealed that the method can be applied to make a relative high removal of sulfur compounds. The reaction conditions, including temperature, amount of oxidant and reaction time were studied. The best result occurs under mild conditions with respect to room temperature and atmospheric pressure, to remove 75.54% of the totle sulfur content in the presence of H2O2 with an O/S molar ratio of 17. Possible mechanism is also disscussed.


2012 ◽  
Vol 47 (1-3) ◽  
pp. 96-104 ◽  
Author(s):  
Meng-Wei Wan ◽  
Luisa Cyd Charisse Biel ◽  
Ming-Chun Lu ◽  
Rizalinda de Leon ◽  
Susan Arco

2020 ◽  
Vol 38 (5A) ◽  
pp. 779-788
Author(s):  
Marwa N. Kareem ◽  
Adel M. Salih

In this study, the sunflowers oil was utilized as for producing biodiesel via a chemical operation, which is called trans-esterification reaction. Iraqi diesel fuel suffers from high sulfur content, which makes it one of the worst fuels in the world. This study is an attempt to improve the fuel specifications by reducing the sulfur content of the addition of biodiesel fuel to diesel where this fuel is free of sulfur and has a thermal energy that approaches to diesel.20%, 30% and 50% of Biodiesel fuel were added to the conventional diesel. Performance tests and pollutants of a four-stroke single-cylinder diesel engine were performed. The results indicated that the brake thermal efficiency a decreased by (4%, 16%, and 22%) for the B20, B30 and B50, respectively. The increase in specific fuel consumption was (60%, 33%, and 11%) for the B50, B30, and B20 fuels, respectively for the used fuel blends compared to neat diesel fuel. The engine exhaust gas emissions measures manifested a decreased of CO and HC were CO decreased by (13%), (39%) and (52%), and the HC emissions were lower by (6.3%), (32%), and (46%) for B20, B30 and B50 respectively, compared to diesel fuel. The reduction of exhaust gas temperature was (7%), (14%), and (32%) for B20, B30 and B50 respectively. The NOx emission increased with the increase in biodiesel blends ratio. For B50, the raise was (29.5%) in comparison with diesel fuel while for B30 and B20, the raise in the emissions of NOx was (18%) and...


Sign in / Sign up

Export Citation Format

Share Document