Engine Performance with Diesel-Biodiesel Blends Fuel and Emission Characteristics

2020 ◽  
Vol 38 (5A) ◽  
pp. 779-788
Author(s):  
Marwa N. Kareem ◽  
Adel M. Salih

In this study, the sunflowers oil was utilized as for producing biodiesel via a chemical operation, which is called trans-esterification reaction. Iraqi diesel fuel suffers from high sulfur content, which makes it one of the worst fuels in the world. This study is an attempt to improve the fuel specifications by reducing the sulfur content of the addition of biodiesel fuel to diesel where this fuel is free of sulfur and has a thermal energy that approaches to diesel.20%, 30% and 50% of Biodiesel fuel were added to the conventional diesel. Performance tests and pollutants of a four-stroke single-cylinder diesel engine were performed. The results indicated that the brake thermal efficiency a decreased by (4%, 16%, and 22%) for the B20, B30 and B50, respectively. The increase in specific fuel consumption was (60%, 33%, and 11%) for the B50, B30, and B20 fuels, respectively for the used fuel blends compared to neat diesel fuel. The engine exhaust gas emissions measures manifested a decreased of CO and HC were CO decreased by (13%), (39%) and (52%), and the HC emissions were lower by (6.3%), (32%), and (46%) for B20, B30 and B50 respectively, compared to diesel fuel. The reduction of exhaust gas temperature was (7%), (14%), and (32%) for B20, B30 and B50 respectively. The NOx emission increased with the increase in biodiesel blends ratio. For B50, the raise was (29.5%) in comparison with diesel fuel while for B30 and B20, the raise in the emissions of NOx was (18%) and...

Author(s):  
Samiddha Palit ◽  
Bijan Kumar Mandal ◽  
Sudip Ghosh ◽  
Arup Jyoti Bhowal

A twin cylinder, constant speed, direct injection CI (diesel) engine was run on jatropha biodiesel and diesel fuel blends. The engine was directly coupled to a hydraulic dynamometer whose load was varied by adjusting load wheel on the top of the engine. The test results were recorded for pure diesel, pure biodiesel (B100) and different diesel/biodiesel blends. The performance characteristics shows that brake specific fuel consumption (BSFC) decreases rapidly with increase of load up to 4.0 to 4.5 kW (55% to 62% of full load) and then decreases slowly. This result also indicates that BSFC increases when the percentage of biodiesel in the blends is increased. Brake thermal efficiency also increases from high biodiesel blends to pure diesel fuel. Each fuel curve shows maximum efficiency reaches at the load range of 5.0 to 5.5 kW (68% to 75% of full load). Pure diesel has maximum efficiency 29.6%, where as pure biodiesel has maximum efficiency of 21.2%. The exhaust gas temperature increases with the load for all fuel blends. Pure biodiesel gives higher exhaust temperature (320°C) than pure diesel (260°C). The exhaust gas temperature increases with the higher percentage of biodiesel blends in different fuel blends. The probable reason for that is biodiesel contains oxygen atoms which make the combustion process complete and hence more energy is released. In respect of emission characteristics, carbon mono-oxide (CO) and hydrocarbon emissions are improved with the addition of biodiesel to diesel. But these emissions increase with the increase of load for all fuel blends. NOx emission increases with load as well as percentage of blending of biodiesel in the diesel fuel.


Transport ◽  
2008 ◽  
Vol 23 (4) ◽  
pp. 306-310 ◽  
Author(s):  
Mohammad Ibrahim Al-Hasan ◽  
Muntaser Al-Momany

The effect of iso‐butanol addition to diesel fuel on engine performance parameters has been experimentally investigated. The used engine was a single cylinder four stroke CI engine Type Lister 1–8. The tests were performed at engine speed that ranges from 375 to 625 with an increment of 42 rpm at different loads and with 10, 20, 30 and 40% v/v iso‐butanol‐diesel fuel blends. The overall engine performance parameters measured included air‐fuel ratio (AFR), exhaust gas temperature, brake power (Bp ), brake specific fuel consumption (bsfc) and brake thermal efficiency (η th ). The experimental results show that AFR, exhaust gas temperature, (Bp ) and (ηbth ) decreased and bsfc increased with iso‐butanol addition compared to net diesel fuel. Also, the obtained results indicate that the engine performance parameters when using up to 30% iso‐butanol in fuel blends are better than that of 40%.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Nidal H. Abu-Hamdeh ◽  
Khaled A. Alnefaie

This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engineNOxusing blends of almond biodiesel was measured.


2020 ◽  
Vol 9 (2) ◽  
pp. 91
Author(s):  
Abdi Hanra Sebayang ◽  
Husin Ibrahim ◽  
Surya Dharma ◽  
Arridina Susan Silitonga ◽  
Berta Br Ginting ◽  
...  

The depletion of fossil fuels, rising of earth temperatures and declining of air quality are an unavoidable phenomenon today. Bioethanol fuel is one solution to reduce this problem that comes from renewable raw materials. The purpose of this study is to investigate engine performance and exhaust emissions at gasoline engine by using the sorghum seeds bioethanol-pertalite blends with different mixed ratios (10%, 15%, and 20%). The test is performed on a four-stroke gasoline engine without modification. Engine speeds vary from 1000 to 4000 rpm, and properties of the sorghum seeds bioethanol-pertalite blends are measured and analyzed. In addition, engine torque, brake power, brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) as well as carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) emissions are measured. The results show that BSFC decreased while BTE increased for a fuel blends containing 20% bioethanol at 3500 rpm engine speed, with each maximum value of 246.93 g/kWh and 36.28%. It is also found that CO and HC emissions are lower for the sorghum seeds bioethanol-pertalite blends. Based on the research results, it can be concluded that the sorghum seeds bioethanol-pertalite blends can improve engine performance and reduce exhaust gas emissions. Keywords: bioethanol; pertalite; performance engine; exhaust gas emission; alternatif fuel.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3375 ◽  
Author(s):  
M. A. Mujtaba ◽  
H. H. Masjuki ◽  
M. A. Kalam ◽  
Fahad Noor ◽  
Muhammad Farooq ◽  
...  

This research work focuses on investigating the lubricity and analyzing the engine characteristics of diesel–biodiesel blends with fuel additives (titanium dioxide (TiO2) and dimethyl carbonate (DMC)) and their effect on the tribological properties of a mineral lubricant. A blend of palm–sesame oil was used to produce biodiesel using ultrasound-assisted transesterification. B30 (30% biodiesel + 70% diesel) fuel was selected as the base fuel. The additives used in the current study to prepare ternary fuel blends were TiO2 and DMC. B30 + TiO2 showed a significant reduction of 6.72% in the coefficient of friction (COF) compared to B30. B10 (Malaysian commercial diesel) exhibited very poor lubricity and COF among all tested fuels. Both ternary fuel blends showed a promising reduction in wear rate. All contaminated lubricant samples showed an increment in COF due to the dilution of combustible fuels. Lub + B10 (lubricant + B10) showed the highest increment of 42.29% in COF among all contaminated lubricant samples. B30 + TiO2 showed the maximum reduction (6.76%) in brake-specific fuel consumption (BSFC). B30 + DMC showed the maximum increment (8.01%) in brake thermal efficiency (BTE). B30 + DMC exhibited a considerable decline of 32.09% and 25.4% in CO and HC emissions, respectively. The B30 + TiO2 fuel blend showed better lubricity and a significant improvement in engine characteristics.


Author(s):  
Tikendra Nath Verma ◽  
◽  
Prem Kumar Chaurasiya ◽  
Upendra Rajak ◽  
Krishnakant Dhakar ◽  
...  

Environmental contamination has been increasing day by day due to increase in use of fossil fuel, therefore world is moving towards unconventional sources of energy generation. In this study, a diesel engine characteristic was analysed in a single cylinder, four strokes, water cooled, direction injection (DI) diesel engine by using two different fuel blends, one is non-edible oil (Moringa oleifera) and another one is alcohol (Ethanol) and operating at different engine load. Diesel engine characteristics were examined in terms of engine performance, emission and combustion characteristics by using Diesel-RK software and before that validate the numerical result with experimental result. The result shows that MB20 has reduction of 2.26%, 7.37%, 2.6%, 8.3% and 15.02% in BTE, EGT, Smoke emission, MRPR and NOX respectively and increases 8.9% and 12.34% in SFC and CO2 emission. The MBE20 has increased by 2.9% and 18.75% in SFC and CO2 emissions and decrease of 1.25%, 2.45, 5.44%, and 3.06% in BTE, EGT, MRPR and NOX respectively was found as compare to diesel fuel. In this paper, mixing various blends 20% of Moringa Oleifera biodiesel fuel with 20% of ethanol gives optimum blends ratio.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amar Pandhare ◽  
Atul Padalkar

This paper presents the performance of biodiesel blends in a single-cylinder water-cooled diesel engine. All experiments were carried out at constant speed 1500 rpm and the biodiesel blends were varied from B10 to B100. The engine was equipped with variable compressions ratio (VCR) mechanism. For 100% Jatropha biodiesel, the maximum fuel consumption was 15% higher than that of diesel fuel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel at various load conditions. The increase in specific fuel consumption ranged from 2.75% to 15% for B10 to B100 fuels. The exhaust gas temperature increased with increased biodiesel blend. The highest exhaust gas temperature observed was 430°C with biodiesel for load conditions 1.5 kW, 2.5 kW, and 3.5 kW, where as for diesel the maximum exhaust gas temperature was 440°C. The CO2emission from the biodiesel fuelled engine was higher by 25% than diesel fuel at full load. The CO emissions were lower with Jatropha by 15%, 13%, and 13% at 1.5 kW, 2.5 kW, and 3.5 kW load conditions, respectively. TheNOxemissions were higher by 16%, 19%, and 20% at 1.5 kW, 2.5 kW, and 3.5 kW than that of the diesel, respectively.


2014 ◽  
Vol 493 ◽  
pp. 273-280 ◽  
Author(s):  
Bambang Sudarmanta ◽  
Sudjud Darsopuspito ◽  
Djoko Sungkono

Performance and emissions characteristics from port injection SINJAI engine 650 cc operating on bioethanol-gasoline blended fuels of 0%, 5%, 10%, 15% and 20% were investigated on water brake dynamometers with power capacity 120 hp. The properties of bioethanol were measured based on American Society for Testing Materials (ASTM) standards. Fuel consumption was measured by the time fuel consumption per 25 cc of fuel in a measuring glass whereas combustion air consumption was measured using an air flow meter. The emission parameters, exhaust gas temperature and air fuel ratio were measured using STARGAS exhaust gas analyzer. The increase of bioethanol content will increases the engine performance and reduces pollutan emission. The highest engine performance produced by E15 blended fuel with increased torsi, mean effective pressure and power output of 10,27 %, thermal efficiency 1,8% but specific fuel consumption increased approximatelly 12,42%. This condition occurs at engine speed 3000 - 3500 rpm. While the emission CO and HC emissions decreased significantly as a result of the leaning effect caused by the bioethanol addition. In this study, it was found that using bioetanol-gasoline blended fuels , the CO and HC emissions would be reduced appoximatelly by 55 and 32% Respectively.


2013 ◽  
Vol 393 ◽  
pp. 344-349 ◽  
Author(s):  
Syarifah Yunus ◽  
Amirul Abd Rashid ◽  
Syazuan Abdul Latip ◽  
Nik Rosli Abdullah ◽  
Rizalman Mamat ◽  
...  

This paper deals with performances and emissions of Jatropha-Palm blended biodiesel as fuel for 4-stroke single vertical cylinder diesel engine. Five fuel samples were tested; i) Diesel fuel supplied by Petronas (PDF); ii) 5% of blended Jatropha-Palm biodiesel and 95% Diesel fuel (B5JPB); iii) 10% of blended Jatropha-Palm biodiesel and 90% Diesel fuel (B10JPB); iv) 15% of blended Jatropha-Palm biodiesel and 85% Diesel fuel (B15JPB); and v) 20% of blended Jatropha-Palm biodiesel and 80% Diesel fuel (B20JPB). Engine performances (specific fuel consumption, brake thermal efficiency) and emissions (exhaust gas temperature and Nox emission) were analyzed and have been discussed in this study. All tests were carried out at varied load conditions which were 0.13, 0.15, 0.17, 0.19 and 0.21 kW. The results revealed that B10JPB blended showed better engine performances compared to its other blends and comparable performances compared to PDF. Comparable Nox emitted of all Jatropha-Palm fuel blended biodiesel fuel sample has been demonstrated to those PDF.


2014 ◽  
Vol 575 ◽  
pp. 624-627 ◽  
Author(s):  
Nidal H. Abu-Hamdeh ◽  
Khaled A. Alnefaie

Different fuel blends containing 10, 30 and 50% almond oil with diesel fuel were prepared and the influence of these blends on emissions and some performance parameters were inspected using a diesel engine. The blends and the diesel fuel were examined under various load conditions and the results showed that almond-blended fuels have slightly different properties than diesel fuel. Measured engine performance parameters have generally showed a slight increase in exhaust gas temperature and in brake specific fuel consumption, and a slight reduction in brake thermal efficiency. Blending of almond oil with diesel fuel reduced the engine CO and increased NOx percentages.


Sign in / Sign up

Export Citation Format

Share Document