A New Method of Total Amount Control of Atmospheric Pollution Based on the Genetic Algorithm

2014 ◽  
Vol 955-959 ◽  
pp. 1263-1266
Author(s):  
Chun Wu ◽  
Wen Xin Ma ◽  
Ya Ping Chen ◽  
Ying Li ◽  
Yan Chen ◽  
...  

In this paper, a genetic algorithm is used has been a new method of total amount control of atmospheric pollution. The global search optimization genetic algorithm with adaptive characteristics, from the point of control the concentration distribution of source density, the source intensity distribution satisfies the requirement of the root of the total amount control. The implementation of the method is: will emissions of various pollution sources in the area of coding of chromosome, genome group according to the biological evolution regularity in the evolution of the simulation environment of natural selection, after the evolution of several generations, finally to get the best the best individual represents the intensity distribution of the source. The research results show that this method is effective and feasible.

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Tng C. H. John ◽  
Edmond C. Prakash ◽  
Narendra S. Chaudhari

This paper proposes a novel method to generate strategic team AI pathfinding plans for computer games and simulations using probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002), in that, a fitness function is used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The path plans are generated by probabilistic pathfinding, and the elimination is done by a fitness test of the path plans. This path plan generation method has the ability to generate variation or different high-quality paths, which is desired for games to increase replay values. This work is an extension of our earlier work on team AI: probabilistic pathfinding (John et al., 2006). We explore ways to combine probabilistic pathfinding and genetic algorithm to create a new method to generate strategic team AI pathfinding plans.


Author(s):  
Burcu Adıguzel Mercangöz ◽  
Ergun Eroglu

The portfolio optimization is an important research field of the financial sciences. In portfolio optimization problems, it is aimed to create portfolios by giving the best return at a certain risk level from the asset pool or by selecting assets that give the lowest risk at a certain level of return. The diversity of the portfolio gives opportunity to increase the return by minimizing the risk. As a powerful alternative to the mathematical models, heuristics is used widely to solve the portfolio optimization problems. The genetic algorithm (GA) is a technique that is inspired by the biological evolution. While this book considers the heuristics methods for the portfolio optimization problems, this chapter will give the implementing steps of the GA clearly and apply this method to a portfolio optimization problem in a basic example.


2013 ◽  
Vol 4 (2) ◽  
pp. 67-79 ◽  
Author(s):  
Tao Yang ◽  
Sheng-Uei Guan ◽  
Jinghao Song ◽  
Binge Zheng ◽  
Mengying Cao ◽  
...  

The authors propose an incremental hyperplane partitioning approach to classification. Hyperplanes that are close to the classification boundaries of a given problem are searched using an incremental approach based upon Genetic Algorithm (GA). A new method - Incremental Linear Encoding based Genetic Algorithm (ILEGA) is proposed to tackle the difficulty of classification problems caused by the complex pattern relationship and curse of dimensionality. The authors solve classification problems through a simple and flexible chromosome encoding scheme, where the partitioning rules are encoded by linear equations rather than If-Then rules. Moreover, an incremental approach combined with output portioning and pattern reduction is applied to cope with the curse of dimensionality. The algorithm is tested with six datasets. The experimental results show that ILEGA outperform in both lower- and higher-dimensional problems compared with the original GA.


2017 ◽  
Vol 18 (4) ◽  
pp. 1484-1496 ◽  
Author(s):  
Afshin Mansouri ◽  
Babak Aminnejad ◽  
Hassan Ahmadi

Abstract In the current study, modified version of the penguins search optimization algorithm (PeSOA) was introduced, and its usage was assessed in the water resources field. In the modified version (MPeSOA), the Gaussian exploration was added to the algorithm. The MPeSOA performance was evaluated in optimal operation of a hypothetical four-reservoir system and Karun-4 reservoir as a real world problem. Also, genetic algorithm (GA) was used as a criterion for evaluating the performance of PeSOA and MPeSOA. The results revealed that in a four-reservoir system problem, the PeSOA performance was much weaker than the GA; but on the other hand, the MPeSOA had better performance than the GA. In the mentioned problem, PeSOA, GA, and MPeSOA reached 78.43, 97.46, and 98.30% of the global optimum, respectively. In the operation of Karun-4 reservoir, although PeSOA performance had less difference with the two other algorithms than four-reservoir problem, its performance was not acceptable. The average values of objective function in this case were equal to 26.49, 23.84, and 21.48 for PeSOA, GA, and MPeSOA, respectively. According to the results obtained in the operation of Karun-4 reservoir, the algorithms including MPeSOA, GA, and PeSOA were situated in ranks one to three in terms of efficiency, respectively.


Author(s):  
David Ko ◽  
Harry H. Cheng

A new method of controlling and optimizing robotic gaits for a modular robotic system is presented in this paper. A robotic gait is implemented on a robotic system consisting of three Mobot modules for a total of twelve degrees of freedom using a Fourier series representation for the periodic motion of each joint. The gait implementation allows robotic modules to perform synchronized gaits with little or no communication with each other making it scalable to increasing numbers of modules. The coefficients of the Fourier series are optimized by a genetic algorithm to find gaits which move the robot cluster quickly and efficiently across flat terrain. Simulated and experimental results show that the optimized gaits can have over twice as much speed as randomly generated gaits.


Sign in / Sign up

Export Citation Format

Share Document