The Research Progress of Boron Nitride Nano-Tubes in Hydrogen Storage

2014 ◽  
Vol 960-961 ◽  
pp. 57-60
Author(s):  
Ning Zhang ◽  
Fei Yi Yang ◽  
Hong Min Kan ◽  
Huan Liu ◽  
Xiao Yang Wang

There are a series of problems existing in global issues, such as the increasing energy demand, environmental pollution, haze and global warming. Thus, the hydrogen energy attracts more attention of new energy industry. The materials of hydrogen storage are ideal renewable energy carrier; the combustion of hydrogen forms water is pollution-free for the environment and releases large amounts of heat. This paper systematically introduces the structure, preparation methods, and hydrogen storage capability of boron nitride nanotubes. It also highlights the importance of boron nitride nanotubes, which we believe will play a promoting role for the hydrogen storage materials.

2019 ◽  
Vol 16 (1) ◽  
pp. 299-325
Author(s):  
Atef Elmahdy ◽  
Hayam Taha ◽  
Mohamed Kamel ◽  
Menna Tarek

The influence of mechanical bending to tuning the hydrogen storage of Ni-functionalized of zigzag type of boron nitride nanotubes (BNNTs) has been investigated using density functional theory (DFT) with reference to the ultimate targets of the US Department of Energy (DOE). Single Ni atoms prefer to bind strongly at the axial bridge site of BN nanotube, and each Ni atom bound on BNNT may adsorb up to five, H2 molecules, with average adsorption energies per hydrogen molecule of )-1.622,-0.527 eV( for the undeformed B40N40-? = 0 , ) -1.62 , 0-0.308 eV( for the deformed B40N40-? = 15, ) -1.589,  -0.310 eV( for the deformed B40N40-? = 30, and ) -1.368-  -0.323 eV( for the deformed B40N40-? = 45 nanotubes respectively. with the H-H bonds between H2 molecules significantly elongated. The curvature attributed to the bending angle has effect on average adsorption energies per H2 molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 5.691 wt % for 5H2 Ni B40N40-? = 0, 15, 30, 45. While the desorption activation barriers of the complexes nH2 + Ni B40N40-? = 0 (n = 1-4) are outside the (DOE) domain (-0.2 to -0.6 eV), the complexes nH2 + Ni- B40N40-? = 0 (n = 5) is inside this domain. For nH2 + Ni- B40N40-? = 15, 30, 45 with (n = 1-2) are outside the (DOE) domain, the complexes nH2 + Ni- B40N40-? = 15, 30, 45 with (n = 3-5) are inside this domain. The hydrogen storage of the irreversible 4H2+ Ni- B40N40-? = 0, 2H2+ Ni- B40N40-? = 15, 30, 45 and reversible 5H2+ Ni- B40N40-? = 0, 3H2+ Ni- B40N40-? = 15, 30, 45 interactions are characterized in terms of density of states, pairwise and non-pairwise additivity, infrared, Raman, electrophilicity and molecular electrostatic potentials. Our calculations expect that 5H2- Ni- B40N40-j = 0, 15, 30, 45 complexes are promising hydrogen storage candidates.


2020 ◽  
Vol 45 (19) ◽  
pp. 11176-11189 ◽  
Author(s):  
Mehdi Noura ◽  
Abbas Rahdar ◽  
S. Maryamdokht Taimoory ◽  
John J. Hayward ◽  
S. Iraj Sadraei ◽  
...  

2012 ◽  
Vol 588-589 ◽  
pp. 1755-1759 ◽  
Author(s):  
Peng Yun Song ◽  
Jie Gao ◽  
Fang Bo Ma

High pressure gaseous hydrogen energy is the most mature technology of hydrogen utilizing. High pressure gaseous hydrogen storage involves with high pressure vessel. In this paper, the research of high pressure gaseous hydrogen storage vessel is reviewed, and the research progress of multi-layer vessel used as high pressure hydrogen storage vessel is especially introduced. An integrated multi-layer-wrapped cylinder which may be used as high pressure gaseous hydrogen storage equipment is analyzed. The cylinder consists of lining, internal cylinder and multi-layer laminates. Lining and internal cylinder are made of anti-hydrogen steel, while the laminates are wrapped outside the internal cylinder to the required thickness with integrated wrapping method. The circumferential and longitudinal welding seams can be staggered in each laminate. The hydrogen leaking detection device is located in each cylinder section. This cylinder is provided with bearing pressure, resistance to hydrogen, anti-burst, online safety monitoring and other characteristics, which offers a possible structure for the construction of high pressure hydrogen storage vessel.


2015 ◽  
Vol 29 (13) ◽  
pp. 1550062 ◽  
Author(s):  
Minghui Wang ◽  
Xinlu Cheng ◽  
Dahua Ren ◽  
Hong Zhang ◽  
Yongjian Tang

The hydrogen-rich compound ( H 2)n CH 4 (for n = 1, 2, 3, 4) or for short ( H 2)n M is one of the most promising hydrogen storage materials. The ( H 2)4 M molecule is the best hydrogen-rich compound among the ( H 2)n M structures and it can reach the hydrogen storage capacity of 50.2 wt.%. However, the ( H 2)n M always requires a certain pressure to remain stable. In this work, we first investigated the binding energy of the different structures in ( H 2)n M and energy barrier of H 2 rotation under different pressures at ambient temperature, applying ab initio methods based on van der Waals density functional (vdW-DF). It was found that at 0 GPa, the ( H 2)n M is not stable, while at 5.8 GPa, the stability of ( H 2)n M strongly depends on its structure. We further investigate the Raman spectra of ( H 2)n M structures at 5.8 GPa and found the results were consistent with experiments. Excitingly, we found that boron nitride nanotubes (BNNTs) and graphite and hexagonal boron nitride ( h - BN ) can be used to store ( H 2)4 M , which give insights into hydrogen storage practical applications.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 648 ◽  
Author(s):  
Liu Zhou ◽  
Lin Sun ◽  
Lixin Xu ◽  
Chao Wan ◽  
Yue An ◽  
...  

Hydrogen energy is considered to be a desired energy storage carrier because of its high-energy density, extensive sources, and is environmentally friendly. The development of hydrogen storage material, especially liquid organic hydrogen carrier (LOHC), has drawn intensive attention to address the problem of hydrogen utilization. Hydrogen carrier is a material that can reversibly absorb and release hydrogen using catalysts at elevated temperature, in which LOHC mainly relies on the covalent bonding of hydrogen during storage to facilitate long-distance transportation and treatment. In this review, the chemical properties and state-of-the-art of LOHCs were investigated and discussed. It reviews the latest research progress with regard to liquid organic hydrogen storage materials, namely N-ethylcarbazole, and the recent progress in the preparation of efficient catalysts for N-ethylcarbazole dehydrogenation by using metal multiphase catalysts supported by carbon–nitrogen materials is expounded. Several approaches have been considered to obtain efficient catalysts such as increasing the surface area of the support, optimizing particle size, and enhancing the porous structure of the support. This review provides a new direction for the research of hydrogen storage materials and considerations for follow-up research.


Sign in / Sign up

Export Citation Format

Share Document