Simulation of Wind Speed for an Large Offshore Wind Turbine

2014 ◽  
Vol 971-973 ◽  
pp. 709-713
Author(s):  
Yong Zhi Xie ◽  
An Le Mu

According to the wind shear and tower shadow effect, wind speed model was established for large offshore wind turbine .Simulation of the wind speed has been fulfilled by the harmonic superposition method on the 4 special points of the offshore wind turbine, and the split-Radix FFT was introduced to improve the computational efficiency. The consistency of theoretical power spectrum and computing power spectrum of pulsating wind speed verified the rationality and validity of simulation of the wind speed.

2011 ◽  
Vol 52-54 ◽  
pp. 1556-1559
Author(s):  
Ping He ◽  
Nai Chao Chen ◽  
Dan Mei Hu

The liquid-gas flow is proposed to accurately simulate the offshore environmental state. The aerodynamic feature is estimated using the three-dimensional model of horizontal-axis wind turbine with NRELS809 series aerofoil by means of the simulating software tool of FLUENT. The variable speed is implemented via the six different wind speeds. The calculated results show that the similarly evolutional tendency of velocity occurs in the wake region when operating at the six variable speeds. The stall speed is related to blade height and wind speed. The small blade height or large wind speed also leads to the serious stall phenomenon. The total force is conducted to estimate the potential capability for leeward and windward surface to capture wind power. The calculated results reveal that the larger wind speed facilitates generating the more magnitude of total force. However, the velocity and force feature for the wind turbine has the especially rapid change at the wind speed of 6 m/s, which perhaps results from the intrinsic geometry and configuration.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012035
Author(s):  
Ke Wan

Abstract Tower shadow effect and wind shear may cause power oscillation of the unit. In order to study the influence of tower shadow effect and wind shear on the output power of wind turbine, a doubly-fed turbine was taken as an example. Firstly, the influence of tower shadow effect and wind shear was considered to study the periodic power fluctuation characteristics of wind turbines. Then, according to the dynamic model of mechanical transmission mechanism, the influences of the inertia constants of generator, fan and the stiffness coefficient of the shaft system on the transient performance of the wind power generation system were considered respectively. Finally, a single machine infinite bus system model including wind speed model is built on PSCAD/EMTDC platform for simulation. The results show that the tower shadow effect and wind shear component can cause the power fluctuation of the turbine. When the power fluctuation frequency of the turbine is equal to the natural oscillation frequency of the wind turbine shafting, the resonance of the turbine occurs, and the amplitude of oscillation is the largest. Changing the transmission parameters will affect the power fluctuation amplitude and speed response speed of the unit.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Wojciech Popko ◽  
Amy Robertson ◽  
Jason Jonkman ◽  
Fabian Wendt ◽  
Philipp Thomas ◽  
...  

Abstract The main objective of the Offshore Code Comparison Collaboration Continuation, with Correlation (OC5) project is validation of aero-hydro-servo-elastic simulation tools for offshore wind turbines (OWTs) through comparison of simulated results to the response data of physical systems. Phase III of the OC5 project validates OWT models against the measurements recorded on a Senvion 5M wind turbine supported by the OWEC Quattropod from the alpha ventus offshore wind farm. The following operating conditions of the wind turbine were chosen for the validation: (1) idling below the cut-in wind speed, (2) rotor-nacelle assembly (RNA) rotation maneuver below the cut-in wind speed, (3) power production below and above the rated wind speed, and (4) shutdown. A number of validation load cases were defined based on these operating conditions. The following measurements were used for validation: (1) strains and accelerations recorded on the support structure and (2) pitch, yaw, and azimuth angles, generator speed, and electrical power recorded from the RNA. Strains were not directly available from the majority of the OWT simulation tools; therefore, strains were calculated based on out-of-plane bending moments, axial forces, and cross-sectional properties of the structural members. The simulation results and measurements were compared in terms of time series, discrete Fourier transforms, power spectral densities, and probability density functions of strains and accelerometers. A good match was achieved between the measurements and models setup by OC5 Phase III participants.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1907 ◽  
Author(s):  
Ahmed G. Abo-Khalil ◽  
Saeed Alyami ◽  
Khairy Sayed ◽  
Ayman Alhejji

Large-scale wind turbines with a large blade radius rotates under fluctuating conditions depending on the blade position. The wind speed is maximum in the highest point when the blade in the upward position and minimum in the lowest point when the blade in the downward position. The spatial distribution of wind speed, which is known as the wind shear, leads to periodic fluctuations in the turbine rotor, which causes fluctuations in the generator output voltage and power. In addition, the turbine torque is affected by other factors such as tower shadow and turbine inertia. The space between the blade and tower, the tower diameter, and the blade diameter are very critical design factors that should be considered to reduce the output power fluctuations of a wind turbine generator. To model realistic characteristics while considering the critical factors of a wind turbine system, a wind turbine model is implemented using a squirrel-cage induction motor. Since the wind speed is the most important factor in modeling the aerodynamics of wind turbine, an accurate measurement or estimation is essential to have a valid model. This paper estimates the average wind speed, instead of measuring, from the generator power and rotating speed and models the turbine’s aerodynamics, including tower shadow and wind shear components, without having to measure the wind speed at any height. The proposed algorithm overcomes the errors of measuring wind speed in single or multiple locations by estimating the wind speed with estimation error less than 2%.


2018 ◽  
Vol 20 (3) ◽  
pp. 1511-1521 ◽  
Author(s):  
Jianping Zhang ◽  
Zhen Gong ◽  
Xing Zhang ◽  
Liang Guo ◽  
Danmei Hu

2013 ◽  
Vol 773 ◽  
pp. 193-198 ◽  
Author(s):  
Jing Li ◽  
Jian Yun Chen ◽  
Xiao Bo Chen

As a kind of high-rise structure, the offshore wind turbine is sensitive to wind load; it can generate strong dynamic responses to the excitation of typhoon. In this paper, a three-dimensional finite element model of offshore wind turbine is established with ADINA, responses under strong wind excitation are numerically simulated and performed subsequently. The fluctuating wind velocity time series are simulated by the method of HSM (harmony superposition method). Based on the modal and tine-history analyses of the structures together with self-vibration character, the pendulum damper is employed to control the resulting undesirable vibrations that are induced by wind. With the damper installed, the displacement and acceleration of the tower are reduced by as much as 40% using 1% of the total effective mass.


2006 ◽  
Vol 23 (7) ◽  
pp. 888-901 ◽  
Author(s):  
R. J. Barthelmie ◽  
G. C. Larsen ◽  
S. T. Frandsen ◽  
L. Folkerts ◽  
K. Rados ◽  
...  

Abstract This paper gives an evaluation of most of the commonly used models for predicting wind speed decrease (wake) downstream of a wind turbine. The evaluation is based on six experiments where free-stream and wake wind speed profiles were measured using a ship-mounted sodar at a small offshore wind farm. The experiments were conducted at varying distances between 1.7 and 7.4 rotor diameters downstream of the wind turbine. Evaluation of the models compares the predicted and observed velocity deficits at hub height. A new method of evaluation based on determining the cumulative momentum deficit over the profiles is described. Despite the apparent simplicity of the experiments, the models give a wide range of predictions. Overall, it is not possible to establish any of the models as having individually superior performance with respect to the measurements.


Sign in / Sign up

Export Citation Format

Share Document