Smooth switching gain-scheduled control for large scale offshore wind turbine under full wind-speed conditions

Author(s):  
Pang-Chia Chen ◽  
Chih-Huang Chiang ◽  
Chih-Hua Hsu ◽  
Kan-Hsiang Chen
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3598
Author(s):  
Sara Russo ◽  
Pasquale Contestabile ◽  
Andrea Bardazzi ◽  
Elisa Leone ◽  
Gregorio Iglesias ◽  
...  

New large-scale laboratory data are presented on a physical model of a spar buoy wind turbine with angular motion of control surfaces implemented (pitch control). The peculiarity of this type of rotating blade represents an essential aspect when studying floating offshore wind structures. Experiments were designed specifically to compare different operational environmental conditions in terms of wave steepness and wind speed. Results discussed here were derived from an analysis of only a part of the whole dataset. Consistent with recent small-scale experiments, data clearly show that the waves contributed to most of the model motions and mooring loads. A significant nonlinear behavior for sway, roll and yaw has been detected, whereas an increase in the wave period makes the wind speed less influential for surge, heave and pitch. In general, as the steepness increases, the oscillations decrease. However, higher wind speed does not mean greater platform motions. Data also indicate a significant role of the blade rotation in the turbine thrust, nacelle dynamic forces and power in six degrees of freedom. Certain pairs of wind speed-wave steepness are particularly unfavorable, since the first harmonic of the rotor (coupled to the first wave harmonic) causes the thrust force to be larger than that in more energetic sea states. The experiments suggest that the inclusion of pitch-controlled, variable-speed blades in physical (and numerical) tests on such types of structures is crucial, highlighting the importance of pitch motion as an important design factor.


2011 ◽  
Vol 52-54 ◽  
pp. 1556-1559
Author(s):  
Ping He ◽  
Nai Chao Chen ◽  
Dan Mei Hu

The liquid-gas flow is proposed to accurately simulate the offshore environmental state. The aerodynamic feature is estimated using the three-dimensional model of horizontal-axis wind turbine with NRELS809 series aerofoil by means of the simulating software tool of FLUENT. The variable speed is implemented via the six different wind speeds. The calculated results show that the similarly evolutional tendency of velocity occurs in the wake region when operating at the six variable speeds. The stall speed is related to blade height and wind speed. The small blade height or large wind speed also leads to the serious stall phenomenon. The total force is conducted to estimate the potential capability for leeward and windward surface to capture wind power. The calculated results reveal that the larger wind speed facilitates generating the more magnitude of total force. However, the velocity and force feature for the wind turbine has the especially rapid change at the wind speed of 6 m/s, which perhaps results from the intrinsic geometry and configuration.


Author(s):  
Sara Muggiasca ◽  
Alessandro Fontanella ◽  
Federico Taruffi ◽  
Hermes Giberti ◽  
Alan Facchinetti ◽  
...  

Abstract This paper deals with the mechatronic design of a large-scale wind turbine model (outdoor scaled prototype) based on the DTU 10MW. This is going to be integrated in the model of a multi-purpose floating structure to be deployed at the Natural Ocean Engineering Laboratory (NOEL) in Reggio Calabria (Italy). The floating wind turbine model is the downscaling of the full-scale structure designed within the EU H2020 Blue Growth Farm project. The structural design of the scaled wind turbine is presented, starting from the aeroelastic and aerodynamic design carried out in a previous work.


Author(s):  
Alessandro Fontanella ◽  
Federico Taruffi ◽  
Sara Muggiasca ◽  
Marco Belloli

Abstract This paper discusses the methodology introduced by the authors to design a large-scale wind turbine model starting from the DTU 10MW RWT. The wind turbine will be coupled with the model of a multi-purpose floating structure, designed within the EU H2020 Blue Growth Farm project, and it will be deployed at the Natural Ocean Engineering Laboratory (NOEL). In this paper the different strategies used to design the wind turbine model rotor, tower and nacelle are discussed, focusing on how it has been possible to reproduce the full-scale system aero-elastic response while ensuring the same functionalities of a real wind turbine.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Wojciech Popko ◽  
Amy Robertson ◽  
Jason Jonkman ◽  
Fabian Wendt ◽  
Philipp Thomas ◽  
...  

Abstract The main objective of the Offshore Code Comparison Collaboration Continuation, with Correlation (OC5) project is validation of aero-hydro-servo-elastic simulation tools for offshore wind turbines (OWTs) through comparison of simulated results to the response data of physical systems. Phase III of the OC5 project validates OWT models against the measurements recorded on a Senvion 5M wind turbine supported by the OWEC Quattropod from the alpha ventus offshore wind farm. The following operating conditions of the wind turbine were chosen for the validation: (1) idling below the cut-in wind speed, (2) rotor-nacelle assembly (RNA) rotation maneuver below the cut-in wind speed, (3) power production below and above the rated wind speed, and (4) shutdown. A number of validation load cases were defined based on these operating conditions. The following measurements were used for validation: (1) strains and accelerations recorded on the support structure and (2) pitch, yaw, and azimuth angles, generator speed, and electrical power recorded from the RNA. Strains were not directly available from the majority of the OWT simulation tools; therefore, strains were calculated based on out-of-plane bending moments, axial forces, and cross-sectional properties of the structural members. The simulation results and measurements were compared in terms of time series, discrete Fourier transforms, power spectral densities, and probability density functions of strains and accelerometers. A good match was achieved between the measurements and models setup by OC5 Phase III participants.


Author(s):  
Charise Cutajar ◽  
Tonio Sant ◽  
Robert N. Farrugia ◽  
Daniel Buhagiar

Abstract Offshore wind technology is at the forefront of exploiting renewable energy at sea. The latest innovations in the field comprise floating wind turbines deployed in deep waters that are capable of intercepting the stronger, less turbulent winds farther away from the landmass. Despite being able to augment the power harnessed, wind resources remain intermittent in nature, and so unable to satisfy the energy demand at all times. Energy storage systems (ESS) are therefore being considered a key component to smoothen out the supply-demand mismatch when wind penetration into electricity grids increases. Yet, multiple issues pertaining to the integration of ESSs on large-scale projects arise, including economic, environmental and safety considerations. This paper presents a novel concept for integrating a hydro-pneumatic energy storage (HPES) system within a spar-type floating offshore wind turbine (FOWT) platform. It aims to assess the technical feasibility of integrating the storage unit within the floater. A preliminary investigation on the influence of integrated storage on the static stability and hydrostatic response of a conventional ballast-stabilised FOWT is conducted, followed by numerical simulations for the dynamic response using ANSYS® AQWA™. Based on the results presented, several conclusions are drawn on the implications of integrating energy storage with floating wind turbine structures. Finally, a preliminary assessment of the thermal efficiency of the storage system based on this specific embodiment is also presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document