Trellis-Based Detecting the Insertion and Deletion Bits for Bit-Patterned Media Recording

2014 ◽  
Vol 979 ◽  
pp. 54-57 ◽  
Author(s):  
Santi Koonkarnkhai ◽  
Piya Kovintavewat ◽  
Phongsak Keeratiwintakorn

Bit-patterned media recording (BPMR) is one of the promising technologies for realizing an areal density up to 4 Tb/in2; however, it poses new challenges to read channel design, including the two-dimensional (2D) interference, media noise, and track mis-registration. Furthermore, the BPMR system encounters the insertion, deletion and substitution errors, which are primarily caused by mis-synchronization between the write clock and the island positions. In this paper, we propose a novel detection method that exploits the trellis structure to detect the occurrence of insertion/deletion bits. Specifically, the specific marker bits are inserted periodically inside an input data sequence before recording onto a magnetic medium. Hence, the branch metric calculation is monitored during the marker bits to determine if there is any insertion/deletion error in the system. Numerical results indicate that the proposed method can performs better than the conventional one in terms of the percentage of detection and the percentage of missed detection and false-alarm, especially at low signal-to-noise ratio scenario.

Author(s):  
Santi Koonkarnkhai ◽  
Phongsak Keeratiwintakorn ◽  
Piya Kovintavewat

In bit-patterned media recording (BPMR) channels, the inter-track interference (ITI) is extremely severe at ultra high areal densities, which significantly degrades the system performance. The partial-response maximum-likelihood (PRML) technique that uses an one-dimensional (1D) partial response target might not be able to cope with this severe ITI, especially in the presence of media noise and track mis-registration (TMR). This paper describes the target and equalizer design for highdensity BPMR channels. Specifically, we proposes a two-dimensional (2D) cross-track asymmetric target, based on a minimum mean-squared error (MMSE) approach, to combat media noise and TMR. Results indicate that the proposed 2D target performs better than the previously proposed 2D targets, especially when media noise and TMR is severe.


2012 ◽  
Vol 48 (11) ◽  
pp. 4574-4577 ◽  
Author(s):  
Laurens Alink ◽  
J. P. J. Groenland ◽  
Jeroen de Vries ◽  
Leon Abelmann

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1264
Author(s):  
Pirat Khunkitti ◽  
Naruemon Wannawong ◽  
Chavakon Jongjaihan ◽  
Apirat Siritaratiwat ◽  
Anan Kruesubthaworn ◽  
...  

In this work, we propose exchange-coupled-composite-bit-patterned media (ECC-BPM) with microwave-assisted magnetic recording (MAMR) to improve the writability of the magnetic media at a 4 Tb/in2 recording density. The suitable values of the applied microwave field’s frequency and the exchange coupling between magnetic dots, Adot, of the proposed media were evaluated. It was found that the magnitude of the switching field, Hsw, of the bilayer ECC-BPM is significantly lower than that of a conventional BPM. Additionally, using the MAMR enables further reduction of Hsw of the ECC-BPM. The suitable frequency of the applied microwave field for the proposed media is 5 GHz. The dependence of Adot on the Hsw was additionally examined, showing that the Adot of 0.14 pJ/m is the most suitable value for the proposed bilayer ECC-BPM. The physical explanation of the Hsw of the media under a variation of MAMR and Adot was given. Hysteresis loops and the magnetic domain of the media were characterized to provide further details on the results. The lowest Hsw found in our proposed media is 12.2 kOe, achieved by the bilayer ECC-BPM with an Adot of 0.14 pJ/m using a 5 GHz MAMR.


Author(s):  
Jia-Yang Juang ◽  
Kuan-Te Lin

Bit patterned media (BPM) is considered as a revolutionary technology to enable further increase of areal density of magnetic recording beyond 1 Tbits/in2 [1]. Implementing BPM technology, however, significantly increases the complexity of the recording process, but also poses tremendous tribological challenges on the head-disk interface (HDI) [2]. One of the major challenges facing BPM is touchdown detection by thermal flying-height control (TFC), in which a minute heater located near the read/write transducers is used to thermally protrude a small portion of the slider into contact with the disk, and the contact is then detected by directly or indirectly measuring the friction, temperature rise or vibration caused by the contact [3]–[7]. Most recording heads rely on touchdown detection to achieve a desired flying height (FH), which approaches sub-1-nm regime for many of today’s commercial drives. As a result sensitive and accurate touchdown detection is of critical importance for a reliable head-disk interface by reducing contact duration and unnecessary interaction between the slider and the disk. However, the impact of touchdown on the mechanical robustness of the media has not been properly studied.


Sign in / Sign up

Export Citation Format

Share Document