concatenated coding
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 0)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 676
Author(s):  
Vamsi K. Amalladinne ◽  
Jamison R. Ebert ◽  
Jean-Francois Chamberland ◽  
Krishna R. Narayanan

Unsourced random access (URA) has emerged as a pragmatic framework for next-generation distributed sensor networks. Within URA, concatenated coding structures are often employed to ensure that the central base station can accurately recover the set of sent codewords during a given transmission period. Many URA algorithms employ independent inner and outer decoders, which can help reduce computational complexity at the expense of a decay in performance. In this article, an enhanced decoding algorithm is presented for a concatenated coding structure consisting of a wide range of inner codes and an outer tree-based code. It is shown that this algorithmic enhancement has the potential to simultaneously improve error performance and decrease the computational complexity of the decoder. This enhanced decoding algorithm is applied to two existing URA algorithms, and the performance benefits of the algorithm are characterized. Findings are supported by numerical simulations.


2021 ◽  
Vol 7 (7) ◽  
pp. 529
Author(s):  
Tania Vite-Garín ◽  
Daniel A. Estrada-Bárcenas ◽  
David S. Gernandt ◽  
María del Rocío Reyes-Montes ◽  
Jorge H. Sahaza ◽  
...  

Histoplasma capsulatum is a dimorphic fungus associated with respiratory and systemic infections in mammalian hosts that have inhaled infective mycelial propagules. A phylogenetic reconstruction of this pathogen, using partial sequences of arf, H-anti, ole1, and tub1 protein-coding genes, proposed that H. capsulatum has at least 11 phylogenetic species, highlighting a clade (BAC1) comprising three H. capsulatum isolates from infected bats captured in Mexico. Here, relationships for each individual locus and the concatenated coding regions of these genes were inferred using parsimony, maximum likelihood, and Bayesian inference methods. Coalescent-based analyses, a concatenated sequence-types (CSTs) network, and nucleotide diversities were also evaluated. The results suggest that six H. capsulatum isolates from the migratory bat Tadarida brasiliensis together with one isolate from a Mormoops megalophylla bat support a NAm 3 clade, replacing the formerly reported BAC1 clade. In addition, three H. capsulatum isolates from T. brasiliensis were classified as lineages. The concatenated sequence analyses and the CSTs network validate these findings, suggesting that NAm 3 is related to the North American class 2 clade and that both clades could share a recent common ancestor. Our results provide original information on the geographic distribution, genetic diversity, and host specificity of H. capsulatum.


2020 ◽  
Vol 24 (10) ◽  
pp. 2092-2095
Author(s):  
Jie Qiu ◽  
Li Chen ◽  
Shiqiu Liu

2020 ◽  
Vol 10 (18) ◽  
pp. 6397
Author(s):  
Jing Ke ◽  
Xiaochun Lu ◽  
Xue Wang ◽  
Xiaofei Chen ◽  
Sheng Tang

This work investigated concatenated coding schemes for Global Navigation Satellite System (GNSS) signals in order to increase their error correction capability in urban environments. In particular, a serial concatenated code that combines an outer Reed–Solomon (RS) code with an inner low-density parity-check (LDPC) code was designed, and the performance was investigated over the land mobile satellite (LMS) channel for characterizing multipath and shadow fading in urban environments. The performance of the proposed concatenated coding scheme was compared to that of a B-CNAV1 message, in which two interleaved 64-ary LDPC codes were employed. The simulation results demonstrate that the proposed concatenated code can obtain a similar error correction performance to the two interleaved 64-ary LDPC codes in both the additive white Gaussian noise (AWGN) and LMS channels at a lower complexity level.


Sign in / Sign up

Export Citation Format

Share Document