Community Based of CHP Microgrid Optimal Operation

2014 ◽  
Vol 981 ◽  
pp. 673-676
Author(s):  
Rui Li ◽  
Peng Li

This paper presents a community-based CHP microgrid model for optimal operation. The model introduces a microgrid controller and consumption parameters, and that the existing restrictions, the optimization of microgrid operation.bacterial foraging optimization(BFO) algorithm was used to develop microgrid problems. Test results show the effectiveness of the model micro-grid operation.

2013 ◽  
Vol 133 (9) ◽  
pp. 1652-1657 ◽  
Author(s):  
Takeshi Nagata ◽  
Kosuke Kato ◽  
Masahiro Utatani ◽  
Yuji Ueda ◽  
Kazuya Okamoto ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
N. Ahmad Aziz ◽  
Victor M. Corman ◽  
Antje K. C. Echterhoff ◽  
Marcel A. Müller ◽  
Anja Richter ◽  
...  

AbstractTo estimate the seroprevalence and temporal course of SARS-CoV-2 neutralizing antibodies, we embedded a multi-tiered seroprevalence survey within an ongoing community-based cohort study in Bonn, Germany. We first assessed anti-SARS-CoV-2 immunoglobulin G levels with an immunoassay, followed by confirmatory testing of borderline and positive test results with a recombinant spike-based immunofluorescence assay and a plaque reduction neutralization test (PRNT). Those with a borderline or positive immunoassay result were retested after 4 to 5 months. At baseline, 4771 persons participated (88% response rate). Between April 24th and June 30th, 2020, seroprevalence was 0.97% (95% CI: 0.72−1.30) by immunoassay and 0.36% (95% CI: 0.21−0.61) when considering only those with two additional positive confirmatory tests. Importantly, about 20% of PRNT+ individuals lost their neutralizing antibodies within five months. Here, we show that neutralizing antibodies are detectable in only one third of those with a positive immunoassay result, and wane relatively quickly.


Author(s):  
Shervin Parvini Ahamdi ◽  
Sajjad Naderi Lordejani ◽  
Ashkan Rahimi-Kian ◽  
Amin Mohammadi Milasi ◽  
Pouya Mahdavipour Vahdati

2014 ◽  
Vol 672-674 ◽  
pp. 1358-1363
Author(s):  
Liu Shu ◽  
Fang Liu ◽  
Xiu Yang

Accessing electric vehicle (EV) into micro-grid (MG) by battery-swapping station (BSS) will not only reduce the negative impact brought by EVs which are directly accessed into MG, but also improve the capacity of MG to absorb more renewable energy. That BSS is regarded as schedulable load is guided to avoid peak and fill valley according to TOU. As a result, the gap between peak and valley of MG is decreased and the operation efficiency of MG is elevated. A specific MG is taken as the studying object and the minimum operating cost is regarded as the optimizing goal, then the genetic algorithm is used to optimize the outputting of each micro-source and the charging power of BSS so that the optimal operation is realized.


Sign in / Sign up

Export Citation Format

Share Document