Disposal of 3.5-dinitro-benzoicacid Wastewater by Semi-Coke/Ozone Combined Technology

2014 ◽  
Vol 997 ◽  
pp. 732-735
Author(s):  
Nan Nan Dang ◽  
Hui Wu Cai ◽  
Jin Meng Zhu

The effects of pH, initial concentration, ozone flow, temperature and semi-coke dosage on 3.5-dinitro-benzoic acid wastewater in the process of carbocoal catalytic ozonation are investigated. The results show that: the removal rate of COD increases with the rise of ozone flow and reaction time in a certain range; temperature has little effect on the removal rate of COD; the removal rate of COD achieve the maximum value when the pH is about 12; the COD removal rate of carbocoal catalytic ozonation is obviously better than single ozonation.

2012 ◽  
Vol 610-613 ◽  
pp. 2367-2371 ◽  
Author(s):  
Ming Zhong Hu ◽  
Zhen He Shi ◽  
Hong Yan Zhao

The effects of the oxidation of potassium ferrate and the flocculation on cresol wastewater water were evaluated. This research aimed at determining the optimum conditions for the COD removal rate duing cresol wastewater water process. The results showed that potassium ferrate dosage of 1.1g/L, the pH value of 5, reaction time 15min, m-cresol initial concentration of 200 mg/L were the optimum conditions. Under the optimum conditions, COD removal rate was over 67%.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 206
Author(s):  
Yicheng Wang ◽  
Yingkun Wang ◽  
Xi Lu ◽  
Wenquan Sun ◽  
Yanhua Xu ◽  
...  

An Mn/Ce@red mud (RM) catalyst was prepared from RM via a doping–calcination method. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the surface morphology, crystal morphology, and elemental composition of the Mn/Ce@RM catalyst, respectively. In addition, preparation and catalytic ozonation conditions were optimized, and the mechanism of catalytic ozonation was discussed. Lastly, a fuzzy analytic hierarchy process (FAHP) was adopted to evaluate the degradation of coal chemical biochemical tail water. The best preparation conditions for the Mn/Ce@RM catalyst were found to be as follows: (1) active component loading of 3%, (2) Mn/Ce doping ratio of 2:1, (3) calcination temperature of 550 °C, (4) calcination time of 240 min, and (5) fly ash floating bead doping of 10%. The chemical oxygen demand (COD) removal rate was 76.58% under this preparation condition. The characterization results suggested that the pore structure of the optimized Mn/Ce@RM catalyst was significantly improved. Mn and Ce were successfully loaded on the catalyst in the form of MnO2 and CeO2. The best operating conditions in the study were as follows: (1) reaction time of 80 min, (2) initial pH of 9, (3) ozone dosage of 2.0 g/h, (4) catalyst dosage of 62.5 g/L, and (5) COD removal rate of 84.96%. Mechanism analysis results showed that hydroxyl radicals (•OH) played a leading role in degrading organics in the biochemical tail water, and adsorption of RM and direct oxidation of ozone played a secondary role. FAHP was established on the basis of environmental impact, economic benefit, and energy consumption. Comprehensive evaluation by FAHP demonstrated that D3 (with an ozone dosage of 2.0 g/H, a catalyst dosage of 62.5 g/L, initial pH of 9, reaction time of 80 min, and a COD removal rate of 84.96%) was the best operating condition.


2013 ◽  
Vol 859 ◽  
pp. 357-360 ◽  
Author(s):  
Xiao Dong Wang ◽  
Yang Lv ◽  
Meng Meng Li ◽  
Hong Ye Liu

This study investigates the degradation of Nonylphenol. The degradation affecting factors including solution ozone dosage, initial concentration, pH, temperature and ultraviolet. The results indicated that when the ozone contents changes, the Nonylphenols degradation rate changes as well. The higher ozone concentration contribute to the faster degradation; With the increase of initial concentration of Nonylphenol, the removal rate of it decrease on the contrary, while with the initial concentration increases, the quality of unit ozone degradation of Nonylphenol is ascenting and then tend to a constant; The remove rate of Nonylphenol is improving when the pH value vary from 4.86~10.34. The effect of Nonylphenols ozonation in higher temperatures is better than it is in lower temperature; Ultraviolet radiation is also favorable for the removal of Nonylphenol as it can shorten the reaction time as well as reduce the amount of ozone.


2012 ◽  
Vol 518-523 ◽  
pp. 2617-2620 ◽  
Author(s):  
Xiao Li Dong ◽  
Lei Wang ◽  
Xin Xin Zhang ◽  
Lin Bai ◽  
Xiu Fang Zhang ◽  
...  

The oxidative degradation of azo dye Reactive Red 2BF in aqueous solution by using potassium ferrate (Ⅵ) was studied. The initial concentration of wastewater 100 mg/L, pH 4.0, reaction time 20 min, and the dosage of potassium ferrate was 0.9 g/L. Under the optimal conditions, the decolorizing rate of Reactive Red 2BF and the COD removal rate were 99.9% and 73.3%.


2013 ◽  
Vol 864-867 ◽  
pp. 155-160 ◽  
Author(s):  
Xiao Dong Wang ◽  
Yang Lv ◽  
Hong Ye Liu ◽  
Meng Meng Li

This study investigates the degradation of bisphenol A (BPA). The degradation affecting factors including solution ozone dosage, initial concentration, pH, temperature and ultraviolet. The results indicated that when the ozone contents changes, the BPAs degradation rate changes as well. The higher ozone concentration contribute to the faster degradation; With the increase of initial concentration of BPA, the removal rate of it decrease on the contrary, while with the initial concentration increases, the quality of unit ozone degradation of BPA is ascenting and then tend to a constant; The remove rate of BPA is improving when the pH value vary from 4.86~10.34. The effect of BPAs ozonation in higher temperatures is better than it is in lower temperature; Ultraviolet radiation is also favorable for the removal of BPA as it can shorten the reaction time as well as reduce the amount of ozone.


2013 ◽  
Vol 295-298 ◽  
pp. 1168-1172
Author(s):  
Jing Shi Li ◽  
Xiao Jun Wang ◽  
Rui Deng ◽  
Zhi Hua Pang

Chromaticity of cigarette industry wastewater increase when treating by aerobic due to large quantities of lignin, nicotine and carbohydrate. Ozone and advance oxidation are proposed for degradation and decoloration of cigarette wastewater that processed by aerobic. The result shows that ozone process has its advantage of high decoloration rate, simple operation and low operation cost. Optimum parameters of ozone process are ozone dosage of 37.65mg/L, reaction time of 15min, reaction pH of 7.0-9.0. The COD removal rate is 38.3% when the decoloration rate is 57.5%. Operation cost of ozone process is 0.4 yuan/m3.


2014 ◽  
Vol 1044-1045 ◽  
pp. 215-218
Author(s):  
Xian Huan Qiu ◽  
Hai Yu ◽  
Peng Fei Deng

In the presence of acetic acid, the effects of pH, processing time, addition of Fe2+ and H2O2 on dye wastewater treatment were studied. Experimental results showed that in the presence of acetic acid, when the pH value was 4, the processing time was 30.0min, addition of ferrous sulfate was 4.8g/L, and addition of hydrogen peroxide was 56mL/L, the treatment effect was the best, COD removal rate reached 51.0%. Further studied of the effect of the presence of acetic acid on Fenton’s oxidation of dye wastewater, the results showed that without of acetic acid, the COD removal rate was higher than that with acetic acid. And the effect of Fenton's reagent on oxidation of dye substances was interfered by the presence of acetic acid.


2011 ◽  
Vol 347-353 ◽  
pp. 1949-1952 ◽  
Author(s):  
Liang Li ◽  
Bing Zhe Xu ◽  
Chang Yu Lin ◽  
Xiao Min Hu

Zidovudine wastewater is difficult to biodegradation due to high COD and toxicity. The synergetic treatment of Zidovudine wastewater by Ultrasonic and iron-carbon micro-electrolysis technology was studied. The influence of initial pH, reaction time, mass ratio of iron and carbon and mass ratio of iron and water on degradation rate of COD was researched. The result showed that the COD removal rate was only about 54.3% and the degradation speed is very slow when iron-carbon micro-electrolysis treated Zidovudine wastewater separately. However, when ultrasonic synergy micro-electrolysis to treat Zidovudine wastewater, the COD removal rate could was up to 85% and the reaction time was also decreased. Moreover, the BOD5 / COD rose from 0.15 to 0.35, which meant the wastewater became easily biodegradable.


2013 ◽  
Vol 455 ◽  
pp. 43-47 ◽  
Author(s):  
Xiao Ming Hou ◽  
Ben Xian Shen ◽  
Ji Gang Zhao

The oxides adsorbent of NiO-ZnO/-Al2O3-SiO2 was prepared by co-precipitation method. SEM, XRD and BET studies were performed to understand the structural properties of the adsorbent. And the adsorbent can be used for the desulfurization of thiophene in n-hexane as model gasoline. Removal rate of thiophene increased with increasing reaction time. Removal rate of thiophene in equilibrium decreases with increasing the initial concentration of thiophene. The extent of adsorption in adsorbent increased with increasing the initial concentration of thiophene. The removal rate of thiophene increases with increasing reaction temperature, it showed that the desulfurization is a chemical process not a physical process.


2014 ◽  
Vol 1010-1012 ◽  
pp. 595-598
Author(s):  
Gui Fang Liu ◽  
Hong Mei Yan ◽  
Yuan Gao ◽  
Ya Quan Sun ◽  
Yu Ping Zhang

Fenton-oxidation process was used to treat the simulation ship sewage that had met the requirement of IMO discharge standard. The effects of reaction time, doses of H2O2 and FeSO4, pH and temperature on COD removal rate were investigated. The results showed that the optimum condition for treating simulation ship sewage was as follows: pH=3.0, concentration of H2O2=9 mmol/L, concentration of FeSO4=3 mmol/L, and reaction time=30 min. Under the optimum condition, the removal rate of COD was to 62.7%. The water quality of the effluent could meet Miscellaneous Domestic Water Quality Standard.


Sign in / Sign up

Export Citation Format

Share Document