Numerical Analysis of the Oscillating Water Column (OWC) Wave Energy Converter (WEC) Considering Different Incident Wave Height

2017 ◽  
Vol 370 ◽  
pp. 120-129
Author(s):  
Mateus das Neves Gomes ◽  
Eduardo Alves Amado ◽  
Elizaldo Domingues dos Santos ◽  
Liércio André Isoldi ◽  
Luiz Alberto Oliveira Rocha

The ocean wave energy conversion into electricity has been increasingly researched in the last years. There are several proposed converters, among them the Oscillating Water Column (OWC) device has been widely studied. The present paper presents a two-dimensional numerical investigation about the fluid dynamics behavior of an OWC Wave Energy Converter (WEC) into electrical energy. The main goal of this work was to numerically analyze the optimized geometric shape obtained in previous work under incident waves with different heights. To do so, the OWC geometric shape was kept constant while the incident wave height was varied. For the numerical solution it was used the Computational Fluid Dynamic (CFD) commercial code FLUENT®, based on the Finite Volume Method (FVM). The multiphasic Volume of Fluid (VOF) model was applied to tackle with the water-air interaction. The computational domain is represented by the OWC device coupled with the wave tank. This work allowed to check the influence of the incident wave height on the hydropneumatic power and the amplification factor of the OWC converter. It was possible to identify that the amplification factor increases as the wave period increases, thereby improving the OWC performance. It is worth to highlight that in the real phenomenon the incident waves on the OWC device have periods, lengths and height variables.

2015 ◽  
pp. 437-443
Author(s):  
Harry Bingham ◽  
Robert Read ◽  
Frederik Jakobsen ◽  
Morten Simonsen ◽  
Pablo Guillen ◽  
...  

2021 ◽  
Vol 11 (18) ◽  
pp. 8630
Author(s):  
Yuri Theodoro Barbosa de Lima ◽  
Mateus das Neves Gomes ◽  
Liércio André Isoldi ◽  
Elizaldo Domingues dos Santos ◽  
Giulio Lorenzini ◽  
...  

The work presents a numerical study of a wave energy converter (WEC) device based on the oscillating water column (OWC) operating principle with a variation of one to five coupled chambers. The main objective is to evaluate the influence of the geometry and the number of coupled chambers to maximize the available hydropneumatic power converted in the energy extraction process. The results were analyzed using the data obtained for hydropneumatic power, pressure, mass flow rate, and the calculated performance indicator’s hydropneumatic power. The Constructal Design method associated with the Exhaustive Search optimization method was used to maximize the performance indicator and determine the optimized geometric configurations. The degrees of freedom analyzed were the ratios between the height and length of the hydropneumatic chambers. A wave tank represents the computational domain. The OWC device is positioned inside it, subject to the regular incident waves. Conservation equations of mass and momentum and one equation for the transport of the water volume fraction are solved with the finite volume method (FVM). The multiphase model volume of fluid (VOF) is used to tackle the water–air mixture. The analysis of the results took place by evaluating the performance indicator in each chamber separately and determining the accumulated power, which represents the sum of all the powers calculated in all chambers. The turbine was ignored, i.e., only the duct without it was analyzed. It was found that, among the cases examined, the device with five coupled chambers converts more energy than others and that there is an inflection point in the performance indicator, hydropneumatic power, as the value of the degree of freedom increases, characterizing a decrease in the value of the performance indicator. With the results of the hydropneumatic power, pressure, and mass flow rate, it was possible to determine a range of geometry values that maximizes the energy conversion, taking into account the cases of one to five coupled chambers and the individual influence of each one.


Author(s):  
Andrei Santos ◽  
Filipe Branco Teixeira ◽  
Liércio Isoldi ◽  
jeferson Avila Souza ◽  
Mateus das Neves Gomes ◽  
...  

Author(s):  
Frances M. Judge ◽  
Eoin Lyden ◽  
Michael O'Shea ◽  
Brian Flannery ◽  
Jimmy Murphy

Abstract This research presents a methodology for carrying out uncertainty analysis on measurements made during wave basin testing of an oscillating water column wave energy converter. Values are determined for Type A and Type B uncertainty for each parameter of interest, and uncertainty is propagated using the Monte Carlo method to obtain an overall Expanded Uncertainty with a 95% confidence level associated with the Capture Width Ratio of the device. An analysis into the impact of reflections on the experimental results reveals the importance of identifying the incident and combined wave field at each measurement location used to determine device performance, in order to avoid misleading results.


Sign in / Sign up

Export Citation Format

Share Document