Effect of Entrainment Ratio and Subcooling Degree on Dual System of Cooling-Thermal Energy Conversion Applying Ejector

2017 ◽  
Vol 379 ◽  
pp. 140-148
Author(s):  
Jung In Yoon ◽  
Ho Saeng Lee ◽  
Chang Hyo Son ◽  
Sung Hoon Seol ◽  
Kwang Seok Lee ◽  
...  

This study proposes a system called 'dual system of cooling-thermal energy conversion applying ejector', which practically applies an ejector to an ocean thermal energy conversion (OTEC) system. The proposed system presents higher system efficiency, owing to the application of an ejector, and reduced initial and operating costs. The main results, obtained from simulation analysis, are as follows: the cooling capacity tended to decrease as the entrainment ratio increased, and the system using R134a generally presented the highest cooling capacity and COP. In terms of generation system, the highest turbine gross power was obtained when the R134a working fluid was applied. The efficiency of the system decreased as the entrainment ratio increased. Finally, the application of the ejector enhanced the efficiency of the generation system, using R134a, by approximately 50%, from 4.73% to 7.10% at the entrainment ratio of 0.1.

2021 ◽  
Vol 9 (8) ◽  
pp. 901
Author(s):  
Yun Chen ◽  
Yanjun Liu ◽  
Wei Yang ◽  
Yiming Wang ◽  
Li Zhang ◽  
...  

Ocean Thermal Energy Conversion (OTEC) is one of the emerging industries of ocean energy and an important link in carbon neutrality. Turbine is a key component of ocean thermal energy conversion, which has an important impact on the performance and energy conversion efficiency of the system. This paper fully considers the application characteristics of ocean thermal energy conversion and the state conversion characteristics of ammonia working fluid. Taking the 100 kW radial inflow turbine in the OTEC application system as an example, based on the design, the turbine is optimized for the key parameters of the turbine stator and the influence of different geometric parameters is analyzed. Subsequently, the optimization results are verified by CFD numerical simulation analysis under different conditions. The results show that the number of stator blades has an important influence on the performance of the turbine. Further optimization studies have shown that through optimization, when the number of stator blades is 33, the internal flow field performance is the best, and the working conditions of the inlet and outlet working fluids are in accordance with the design points without obvious shock wave and reverse flow phenomenon, the efficiency is 89.46%, 3.94% higher than the design value.


2016 ◽  
Vol 10 (5) ◽  
pp. 32 ◽  
Author(s):  
Ashrafoalsadat Shekarbaghani

Two-thirds of the earth's surface is covered by oceans. These bodies of water are vast reservoirs of renewable energy.<strong> </strong>Ocean Thermal Energy Conversion technology, known as OTEC, uses the ocean’s natural thermal gradient to generate power. In geographical areas with warm surface water and cold deep water, the temperature difference can be leveraged to drive a steam cycle that turns a turbine and produces power. Warm surface sea water passes through a heat exchanger, vaporizing a low boiling point working fluid to drive a turbine generator, producing electricity. OTEC power plants exploit the difference in temperature between warm surface waters heated by the sun and colder waters found at ocean depths to generate electricity. This process can serve as a base load power generation system that produces a significant amount of renewable, non-polluting power, available 24 hours a day, seven days a week. In this paper investigated the potential of capturing electricity from water thermal energy in Iranian seas (Caspian Sea, Persian Gulf and Oman Sea). According to the investigated parameters of OTEC in case study areas, the most suitable point in Caspian Sea for capturing the heat energy of water is the south part of it which is in the neighborhood of Iran and the most suitable point in the south water of Iran, is the Chahbahar port.


The use of organic isobutane will be investigated for a closed-cycle Ocean Thermal Energy Conversion (OTEC) onshore plant that delivers 110 MW electric powers. This paper will cover concept, process, energy calculations, cost factoids and environmental aspects. In isobutane cycle, hot ocean surface water is used to vaporize and to superheat isobutane in a heat exchanger. Isobutane vapor then expands through a turbine to generate useful power. The exhaust vapor is condensed afterwards, using the cold deeper ocean water, and pumped to a heat exchanger to complete a cycle. Results show the major design characteristics and equipment's of the OTEC plant along with cycle efficiency and cycle improvement techniques.


Author(s):  
Ho-Saeng Lee ◽  
Seung-Won Lee ◽  
Hyeon-Ju Kim ◽  
Young-Kwon Jung

To experiment 20kW OTEC, the closed-cycle type of OTEC (Ocean Thermal Energy Conversion) was designed and manufactured. R32 (Difluoromethane, CH2F2) was used as the working fluid and a temperature of heat source and heat sink is 26°C, 5°C, respectively. The semi-welded type heat exchanger is applied for the evaporator and condenser and the cycle was designed for the gross power of 20kW. In the plate arrangement of the semi-welded type heat exchanger, one channel for working fluid is welded, and another channel for seawater is sealed by gasket. In this paper, various performance evaluations and experiments were carried out as constructing subminiature pilot plant of the OTEC and compared with the results of cycle analysis. In results, gross power of the turbine shows 20.1kW and cycle efficiency is 1.91% when heat source and heat sink is 26°C, 5°C. For the variation of temperature difference between the heat source and heat sink, when the temperature difference was 21°C, the gross power increased by about 33.3% from that when the temperature difference was 19 °C.


2002 ◽  
Vol 36 (4) ◽  
pp. 25-35 ◽  
Author(s):  
L. A. Vega

The vertical temperature distribution in the open ocean can be simplistically described as consisting of two layers separated by an interface. The upper layer is warmed by the sun and mixed to depths of about 100 m by wave motion. The bottom layer consists of colder water formed at high latitudes. The interface or thermocline is sometimes marked by an abrupt change in temperature but more often the change is gradual. The temperature difference between the upper (warm) and bottom (cold) layers ranges from 10°C to 25°C, with the higher values found in equatorial waters. This implies that there are two enormous reservoirs providing the heat source and the heat sink required for a heat engine. A practical application is found in a system (heat engine) designed to transform the thermal energy into electricity. This is referred to as OTEC for Ocean Thermal Energy Conversion. Several techniques have been proposed to use this ocean thermal resource; however, at present it appears that only the closed cycle (CC-OTEC) and the open cycle (OC-OTEC) schemes have a solid foundation of theoretical as well as experimental work. In the CC-OTEC system, warm surface seawater and cold seawater are used to vaporize and condense a working fluid, such as anhydrous ammonia, which drives a turbine-generator in a closed loop producing electricity. In the OC-OTEC system, seawater is flash-evaporated in a vacuum chamber. The resulting low-pressure steam is used to drive a turbine-generator. Gold seawater is used to condense the steam after it has passed through the turbine. The open-cycle can, therefore, be configured to produce desalinated water as well as electricity.


Sign in / Sign up

Export Citation Format

Share Document