FEM Analysis of Cold Flaring Process of SUS304 Pipe

2018 ◽  
Vol 382 ◽  
pp. 120-126
Author(s):  
Shinichi Nishida ◽  
Junshi Ichikawa ◽  
Yuta Kashitani ◽  
Kentaro Tsunoda ◽  
Yusuke Takeuchi ◽  
...  

This paper describes a production process for experiment and finite element method (FEM) analysis of cold forming of SUS304 pipe. These large diameter pipes such as φ114.3 mm are used for a plant as a flow channel of gas and liquid. The connection of pipes are generally welded at the plant. However, the other connecting method are required from a viewpoint of making the plant environment worse by welding. Therefore, flaring process of large diameter pipes were proposed. This flaring process is one of a method of pipe flange forming. The formed pipes were connected used with loose flange. Flaring process was generally hot process, thus it has some problem such as becoming complex of forming machine and accuracy of dimension. In this study, cold flaring process of SUS304 pipe was proposed to satisfy these requisitions. Experiment and FEM analysis of cold flaring process were performed to clarify the optimum forming conditions for the flat length of connecting surface such as a diameter of punch, punch stroke and taper angle of dies. As a result, a gap between punch and die was needed to match the pipe wall thickness.

Author(s):  
Alastair Walker ◽  
Ruud Selker ◽  
Ping Liu ◽  
Erich Jurdik

Abstract The method presented by DNVGL in DNVGL-ST-F101 [1], “Submarine pipeline systems”, 2017, for calculating the collapse pressure of submerged pipelines is well-known for design of pipes intended to operate in very deep water. Such pipes are regarded as quite thick-walled with diameter to wall thickness ratio in the range of 15 to 30. There is now substantial experience in the practical manufacture, installation and operation of such pipes. Recently there has been a growing use of large diameter pipelines to transport high volumes of gas over great lengths at moderate water depths. The pipes are considered to be thin-walled with ratios of diameter to wall thickness in the range of 30 to 45. This paper assesses the validity of the DNVGL design method when applied to the design of such thin-walled pipes. A particular aspect of the buckling pressure of large diameter pipes is the effect of the Bauschinger phenomenon. The phenomenon occurs when pipes made using the UOE method are subjected to internal pressure, to provide expansion of the pipe during manufacture, thus reducing the out-of-roundness of the pipe wall, and subsequently subjected to external hydrostatic pressure during pipeline operation. To date the Bauschinger phenomenon has been recognised as resulting in a reduction of the circumferential compressive yield of the pipe material. This reduction is accommodated in the DNVGL design formula. Recent research into material properties has shown that the Bauschinger effect also has the effect of reducing the modulus of steel materials over a range of values of applied circumferential compressive stresses. The paper reviews the basis of the Bauschinger phenomenon and presents results from very detailed accurate testing of UOE pipe material. The tests determine the levels of modulus for pipes subject to circumferential compressive stresses. Although results for compressive stress-strain values have previously been available for pipes subject to high levels of hydrostatic pressure it has been considered that the Bauschinger effect is not generally significant for thick-walled pipes. The tests reported here consider the calculation of material modulus levels for low levels of stress that correspond to the buckling stress of thin-walled pipes. The calculated collapse pressure for such pipes is examined in this paper and compared to corresponding results from the DNVGL design formula to provide guidance on the effect of design levels of pipe wall thickness due to inclusion of the Bauschinger effect. The comparisons are for example pipe wall thickness and material conditions. Conclusions are drawn that including the Bauschinger effect in the calculated pipe wall thickness can have a beneficial effect with regard to pipe manufacturing and installation costs for pipe subjected to mild heat treatment.


1992 ◽  
Vol 114 (1) ◽  
pp. 81-83 ◽  
Author(s):  
D. N. Githuku ◽  
A. J. Giacomin

Extruded plastic pipe leaving an annular die is solidified in a long cooling tank by spraying the outer surface with cold water. The inside surface can take a long time to solidify as the solidification progresses radially inward. This results in flow of molten polymer down the inside of the pipe. This gravity flow of molten extrudate is called slumping, and it can cause serious nonuniformity in pipe wall thickness particularly in large diameter, thick walled pipes. It can also lead to another phenomenon known as “knuckle” formation where melt accumulates at specific locations. A simple numerical scheme to model this flow has been developed. Three-dimensional graphical illustrations of the slumping phenomenon based on this simulation are presented in this paper. The model predictions have been compared with commerical pipe data and they are in qualitative agreement.


Author(s):  
Stelios Kyriakides ◽  
Mark D. Herynk ◽  
Heedo Yun

Large-diameter pipes used in offshore applications are commonly manufactured by cold-forming plates through the UOE process. Collapse experiments have demonstrated that these steps, especially the final expansion, degrade the mechanical properties of the pipe and result in a reduction in its collapse pressure, upwards of 30%. In this study, the UOE forming process has been modeled numerically so that the effects of press parameters of each forming step on the final geometry and mechanical properties of the pipe can be established. The final step involves simulation of pipe collapse under external pressure. An extensive parametric study of the problem has been conducted, through which ways of optimizing the process for improved collapse performance have been established. For example, it was found that optimum collapse pressure requires a tradeoff between pipe shape (ovality) and material degradation. Generally, increase in the O-strain and decrease in the expansion strain improve the collapse pressure. Substituting the expansion by compression can not only alleviate the UOE collapse pressure degradation but can result in a significant increase in collapse performance.


2019 ◽  
Vol 254 ◽  
pp. 02024
Author(s):  
Marián Handrik ◽  
Filip Dorčiak ◽  
Milan Sága ◽  
Milan Vaško ◽  
Lenka Jakubovičová

This paper presents a modification of the existing optimalization model in order to increase the accuracy of the solution in the initial and the end part of the bend. Developed optimalization algorithms are implemented in the program MATLAB, and the simulation of the bending process is solved in the FEM program ADINA. Created optimisation program automatically generate model for FEM analysis and automaticaly analyses obtained results from FEM analysis.


2017 ◽  
Vol 44 (8) ◽  
pp. 589-597 ◽  
Author(s):  
Bipul Chandra Mondal ◽  
Ashutosh Sutra Dhar

The strength of pipeline with multiple corrosion patches depends on the number of corrosion patches within an area on the pipe surface, the locations of corrosion patches along the longitudinal and circumferential directions of the pipe. In this paper, the strength and deformation characteristics of corroded pipeline are investigated using finite element analysis. Pipes with different diameters and different depths of corrosion patches are considered. The spacing of the corrosion patches is varied along longitudinal, diagonal, and circumferential directions of the pipes. The study shows that the limiting spacing for interaction of corrosion patches depends predominantly on pipe wall thickness, corrosion depth, and the location of the defects. The diameter of the pipe has some influence on the interaction for large diameter pipes. A new interaction rule for the limiting spacing for interaction is developed for longitudinally spaced corrosion patches. For circumferentially spaced corrosion patches, the ASME recommendation for the limiting spacing is found to be reasonable.


2020 ◽  
pp. 49-52
Author(s):  
R.A. Okulov ◽  
N.V. Semenova

The change in the intensity of the deformation of the pipe wall during profiling by drawing was studied. The dependence of the strain intensity on the wall thickness of the workpiece is obtained to predict the processing results in the production of shaped pipes with desired properties. Keywords drawing, profile pipe, wall thickness, strain rate. [email protected]


1978 ◽  
Vol 10 (1) ◽  
pp. 29-34 ◽  
Author(s):  
V. V. Chelyshev ◽  
V. G. Burdukovskii ◽  
B. N. Gubashov ◽  
V. V. Kirichenko

Metallurgist ◽  
1987 ◽  
Vol 31 (10) ◽  
pp. 320-321
Author(s):  
V. M. Ryabov ◽  
L. A. Usova

Sign in / Sign up

Export Citation Format

Share Document