Effect of Sintering Temperatures and Nd2O3 Dopant on the Microstructure, Physical and Electrical Properties of KNNT Ceramics

2020 ◽  
Vol 398 ◽  
pp. 67-75
Author(s):  
Hamza M. Kamal ◽  
Mohammed J. Kadhim

The microstructure, physical, dielectric and the piezoelectric characteristics of the (K0.5Na0.5) (Nb0.9Ta0.1) O3 (KNNT) ceramics as a function of the sintering temperature and Nd2O3 dopant were inspected in this work. It was found that the sintering temperature has a significant impact on the above-mentioned properties. In the same context, the addition of HYPERLINK "https://pubchem.ncbi.nlm.nih.gov/compound/Neodymium_oxide" neodymium oxide led to remarkable improvement in the microstructure, density, dielectric and piezoelectric properties of KNNT ceramics when compared to undoped ceramics.

2007 ◽  
Vol 280-283 ◽  
pp. 219-222
Author(s):  
Hua Jun Sun ◽  
Wen Chen ◽  
Qing Xu ◽  
Jing Zhou ◽  
Xiao Fang Liu

Using Zr(NO3)4.5H2O as Zr source, PZT powder with a single-phase perovskite structure was synthesized by a sol-autocombustion method at a calcining temperature of 700°C. Compared with a solid-state reaction method, the calcining temperature of PZT can be lowered by 200°C when using the sol-autocombustion method. PMZN ceramic was prepared at a sintering temperature of 1050°C with the resulting PZT powder as a base, which can lower the sintering temperature by 150°C. The microstructure of the PMZN ceramic was investigated by XRD and SEM, and the dielectric and piezoelectric properties were measured. The results showed that the PMZN piezoelectric ceramic has a tetragonal perovskite structure, showing the main electrical properties as follows: Kp = 0.54, Qm = 1073, tgd £ 0.001, e33 T/ e0 = 1236, d33 = 454pC/N, and fs =136.1KHz.


2021 ◽  
Vol 15 (1) ◽  
pp. 79-86
Author(s):  
Cheng-Shong Hong ◽  
Yi-Tian Hong

In this study, the effects of sintering temperature on microstructure, dielectric and piezoelectric properties are investigated for the non-stoichiometric (Na0.48K0.473Li0.04Sr0.007)(Nb0.883Ta0.05Sb0.06Ti0.007)O3 (NKLNTSST) piezoelectric ceramics. The results suggest that the piezoelectric properties are enhanced owing to the more normal ferroelectric characteristics, higher density, more uniform grains and presence of polymorphic phase transition regions, which are observed with an increase in the sintering temperature up to 1080?C. The piezoelectric properties are weakened owing to the larger degree of diffuse phase transition and more cationoxygen-vacancy pairs with an increase in the sintering temperature above 1080?C. The best piezoelectric properties including kp = 40%, d33 = 288 pC/N, ?max = 72.12, loss = 2.57%, Ec = 13.45 kV/cm and Pr = 10.23 ?C/cm2 are obtained at the sintering temperature of 1080?C.


2014 ◽  
Vol 1061-1062 ◽  
pp. 83-86
Author(s):  
Hong Wu ◽  
De Yi Zheng

In this paper, the effects of different sintering temperature on the microstructure and piezoelectric properties of Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3(PNZZT) ceramic samples were investigated. The Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 ceramics materials was prepared by a conventional mixed oxide method. In the period of the experiment, the relationship between crystallographic phase and microstructure were analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM) respectively. The XRD patterns shows that all of the ceramic samples are with a tetragonal perovskite structure. Along with sintering temperature increased and the x is 0.03, the grain size gradually become big. Through this experiment, it has been found that when the x is 0.03 and sintered at 1130°C for 2 h, the grains grow well, the grain-boundary intersection of the sample combined well and the porosity of the ceramics decreased, an excellent comprehensive electrical properties of the Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 samples can be obtained. Its best electrical properties are as follows: dielectric constant (ε) is 1105, dielectric loss(tg) is 0.017, electromechanical coupling coefficient (Kp) is 0.287, piezoelectric constant(d33) is 150PC/N


2011 ◽  
Vol 492 ◽  
pp. 194-197 ◽  
Author(s):  
Yue Fang Wang ◽  
Xiu Jie Yi ◽  
Wei Pan ◽  
Guo Zhong Zang ◽  
Juan Du

Lead-free (1-x-y)Na1/2Bi1/2TiO3-xBaTiO3-yBiFeO3 ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure. The dielectric and piezoelectric properties of ceramics were investigated with the amount of different BiFeO3 substitutions. The addition of BiFeO3 can not only decrease Ec and Pr but also lead to a significant degradation of the dielectric loss tanδ.


2013 ◽  
Vol 368-370 ◽  
pp. 760-763
Author(s):  
Chun Huy Wang ◽  
Ming Qiu Wei

(Na0.5K0.5)NbO3 with Bi0.5(Na0.97K0.03)0.5TiO3 with x≤0.05 has been prepared by the conventional mixed oxide process. X-ray diffraction analysis revealed that, during sintering, all the Bi(Na0.97K0.03)TiO3 diffuses into the lattice of (Na0.5K0.5)NbO3 to form a solid solution with a perovskite structure. A morphotropic phase boundary (MPB) between orthorhombic (O) and rhombohedral (R) was found at the composition 0.98(Na0.5K0.5)NbO3-0.02Bi0.5(Na0.97K0.03)0.5TiO3 [abbreviated as 0.98NKN-0.02BNKT] with correspondingly enhanced dielectric and piezoelectric properties. For 0.98NKN-0.02BNKT ceramics, the electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.33 and 0.49, respectively, after sintering at 1100 oC for 3 h. The ratio of the thickness coupling coefficient to the planar coupling coefficient is 1.48. With suitable Bi0.5(Na0.97K0.03)0.5TiO3 concentration, a dense microstructure and good electrical properties are obtained.


Author(s):  
Nguyen Thi Tuyet Trinh ◽  
Bui Thi Ngoc Anh ◽  
Le Tran Uyen Tu ◽  
Dung Thi Hoai Trang ◽  
Le Thi Lien Phuong ◽  
...  

Lead-free piezoelectric ceramic 0.48Ba[Zr0.2Ti0.8]O3 - 0.52[Ba0.7Ca0.3]TiO3 (BZT-BCT) with a nanostructure was manufactured by traditional ceramic technology. Nanostructure and the sintering aid reduce the calcinating temperature as well as the sintering temperature and some electrical properties of BZT-BCT ceramics systems are researched. The results show that they can reduce the calcinating and sintering temperatures of ceramics systems from 1250 0C and 1450 0C to 1170 0C and 1350 0C. Moreover, the piezoelectric properties of the 0.48BZT - 0.52BCT at the optimal calcinating and sintering temperature will be discussed in detail.


2013 ◽  
Vol 364 ◽  
pp. 794-798 ◽  
Author(s):  
Yi Chen ◽  
Jian Guo Zhu ◽  
Ding Quan Xiao

The gallium and indium double-modified bismuth scandate-lead titanate (1-x)Bi (In0.20Ga0.05Sc0.75)O3-xPbTiO3((1-x)BIGS-xPT,x=0.55-0.70) ceramics were prepared by using conventional ceramic technique. (1-x)BIGS-xPT ceramics for nearx=0.60 exhibits an evident enhancement in room temperature dielectric and piezoelectric properties, with dielectric constantε, piezoelectric constantd33, planar electromechanical coupling coefficientkpand Curie temperatureTCof 1100, 295 pC/N, 0.43 and 435 °C, respectively. TheTCof (1-x)BIGS-xPT is in the range of 425-530 °C for the compositions investigated. The combination of highTCand excellent piezoelectric activity suggest that the (1-x)BIGS-xPT ceramics are usable candidate materials for high temperature piezoelectric devices applications.


Sign in / Sign up

Export Citation Format

Share Document