Modeling of Thermodynamic and Diffusion Properties in Ionic Materials

2016 ◽  
Vol 8 ◽  
pp. 1-30 ◽  
Author(s):  
Bi Cheng Zhou ◽  
Zi Kui Liu

In this chapter, the modeling techniques of the thermodynamic and diffusion properties based on density functional theory in ionic materials, specifically oxide ceramic materials or ionic conductor materials are reviewed. Section 1 is the introduction of this book chapter. Section 2 is devoted to introduce the modeling methods of first-principles finite temperature thermodynamics, including quasi-harmonic phonon calculations and the Debye model. In the phonon model, the frozen phonon method, the linear response method, and the newly developed mixed-space method to model ionic polar materials are discussed. Section 3 introduces the general atomic diffusion theory, first-principles transition state calculations (double-well approach), and ab initio molecular dynamics simulations of the diffusion coefficients in ionic materials. Section 4 discusses some of the recent works of first-principles prediction of the thermodynamic and diffusion properties of ionic materials from our group and in the literature, with a focus on oxides for energy applications. Section 5 summarizes this book chapter.

2018 ◽  
Vol 20 (15) ◽  
pp. 10048-10059 ◽  
Author(s):  
Dong-Hyuk Jung ◽  
Ji-Hwan Lee ◽  
Mehmet Emin Kilic ◽  
Aloysius Soon

The structural, vibrational, and diffusion properties of different ceria-based systems (including oxygen vacancies and rare-earth dopants (Sm or Gd)) have been examined using both first-principles density-functional theory calculations and finite-temperature molecular dynamics simulations.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Eric Paquet ◽  
Herna L. Viktor

Ab initio molecular dynamics is an irreplaceable technique for the realistic simulation of complex molecular systems and processes from first principles. This paper proposes a comprehensive and self-contained review of ab initio molecular dynamics from a computational perspective and from first principles. Quantum mechanics is presented from a molecular dynamics perspective. Various approximations and formulations are proposed, including the Ehrenfest, Born–Oppenheimer, and Hartree–Fock molecular dynamics. Subsequently, the Kohn–Sham formulation of molecular dynamics is introduced as well as the afferent concept of density functional. As a result, Car–Parrinello molecular dynamics is discussed, together with its extension to isothermal and isobaric processes. Car–Parrinello molecular dynamics is then reformulated in terms of path integrals. Finally, some implementation issues are analysed, namely, the pseudopotential, the orbital functional basis, and hybrid molecular dynamics.


2020 ◽  
Vol 127 (8) ◽  
pp. 085702 ◽  
Author(s):  
Xiaolan Yan ◽  
Pei Li ◽  
Lei Kang ◽  
Su-Huai Wei ◽  
Bing Huang

2005 ◽  
Vol 864 ◽  
Author(s):  
Jinyu Zhang

AbstractUsing density functional theory (DFT) calculations within the generalized gradient approximation (GGA), we have investigated the structure, energies and diffusion behavior of Si defects including interstitial, vacancy, FFCD and divacancy in various charged states.


2010 ◽  
Vol 404 (2) ◽  
pp. 109-115 ◽  
Author(s):  
Chen Duan ◽  
Yue-Lin Liu ◽  
Hong-Bo Zhou ◽  
Ying Zhang ◽  
Shuo Jin ◽  
...  

2005 ◽  
Vol 864 ◽  
Author(s):  
Scott A. Harrison ◽  
Thomas F. Edgar ◽  
Gyeong S. Hwang

AbstractBased on first principles density functional theory calculations, we identify the structure and diffusion pathway for a fluorine-silicon interstitial complex (F-Sii). We find the F-Sii complex to be most stable in the singly positive charge state at all Fermi leVels. At mid-gap, the complex is found to have a binding energy of 1.08 eV relative to bond-centered F+ and (110)-split Sii. We find the F-Sii complex has an overall migration barrier of 0.76 eV, which suggests that this complex may play an important role in fluorine diffusion. Our results should lead to more accurate models that describe the behavior of fluorine co-implants crystalline silicon.


2017 ◽  
Vol 19 (31) ◽  
pp. 20551-20558 ◽  
Author(s):  
Raúl Guerrero-Avilés ◽  
Walter Orellana

The energetics and diffusion of water molecules and hydrated ions (Na+, Cl−) passing through nanopores in graphene are addressed by dispersion-corrected density functional theory calculations and ab initio molecular dynamics (MD) simulations.


Sign in / Sign up

Export Citation Format

Share Document