Characterization of Scleraxis and SRY-Box 9 from Adipose-Derived Stem Cells Culture Seeded with Enthesis Scaffold in Hypoxic Condition

Author(s):  
Tabita Prajasari ◽  
Chilmi Muhammad Zaim ◽  
Heri Suroto

The use of mesenchymal stem cells can add local improvements potential to enthesis tissue regeneration based on tropical activity through secretions of growth factors, cytokines, and vesicles (e.g. exosomes), collectively known as secretomes. This study aims to analyze secretomes characterization from adipose-derived mesenchymal stem cells seeded with enthesis tissue scaffold in hypoxic conditions and to analyze the influence of hypoxic environment to the characterization of secretomes. This is an in-vitro study using a Randomized Control Group Post-Test Only design. This study using Adipose Stem Cells (ASCs) were cultured in hypoxia (Oxygen 5%) and Normoxia (21%) condition. The scaffolds are fresh-frozen enthesis tissue and was seeded in the treatment group and compared to control. The evaluation of Scleraxis (Scx) and SRY-box (Sox9) was measured using ELISA on the 2nd, 4th, and 6th days. Comparison of Scx levels between each evaluation time showed a positive trend in a group with scaffold in hypoxia condition although it has no significant differences (p=0.085), with the highest level on day 6, that is 13,568 ng/ml. Conversely, the comparison of Sox9 showed significant differences (p=0.02) in a group with scaffold in hypoxia condition, with the highest level on day 4, that is 28,250 ng/ml. The use of enthesis scaffold seeded in adipose-derived mesenchymal stem cells in hypoxic conditions shows a positive trend as regenerative effort of injured enthesis tissue through Scleraxis and Sox9 secretomes induction.

Author(s):  
Vivi Yustianingsih ◽  
Titiek Sumarawati ◽  
Agung Putra

Background<br />Mesenchymal stem cells (MSCs) are multipotent stromal cells that express CD73, CD90, and CD105 surface markers, but not CD14, CD45, CD34, CD11b, and HLA-DR. MSCs under hypoxic conditions have the essential role of maintaining the stemness capacity by releasing several growth factors into their medium, known as hypoxia conditioned medium (HCM). This study was performed to compare the effect of percentage of HCM to normoxic medium (NM) in increasing MSC proliferation marked by proliferation rate and surface marker expression.<br /><br />Methods<br />This study was of post-test only control group design using human umbilical cord-MSCs (hUC-MSCs) as subjects. The HCM treatment group was obtained by culturing MSCs under 5% O2, whereas the NM control group was grown under 20% O2. The hUC-MSCs were divided into 4 groups with different dose ratios of HCM to NM (25%:75%; 50%:50%; 75%:25% for P1, P2 and P3, respectively and 100% of NM for the controls). All of these groups were maintained at 37oC and the data was collected after 72 hours incubation. MSC marker expression of CD73, CD90 and CD105 was analyzed using flow cytometry and MSC proliferation by trypan blue assay. <br /><br />Result<br />There were significant differences in MSC marker expression of CD73, CD90 and CD105 and proliferation at all dose ratios of HCM to NM (p&lt;0.05).<br /><br />Conclusion<br />Low oxygen concentration promotes MSC proliferation and stemness thus it might be beneficial for maintaining the MSC physiologic niche in-vitro.


Author(s):  
Antoine Berbéri ◽  
Joseph Sabbagh ◽  
Rita Bou Assaf ◽  
Michella Ghassibe-Sabbagh ◽  
Fatima Al-Nemer ◽  
...  

2019 ◽  
Vol 12 (6) ◽  
pp. 916-924 ◽  
Author(s):  
Erma Safitri ◽  
Mas'ud Hariadi

Aim: Biotechnological culture of hypoxia-conditioned (CH) rat mesenchymal stem cells (rMSC-CH) for testicular failure therapy with low libido improves the functional outcome of the testicle for producing spermatogenic cells and repairs Leydig cells in rats (Rattus norvegicus). Materials and Methods: In the first group (T1), rats with testicular failure and low libido were injected with normoxia-conditioned (CN) rMSCs (21% oxygen); in the second group (T2), rats with testicular failure and low libido were injected with rMSC-CH (1% oxygen); in the negative control group (T–), rats with normal testis were injected with 0.1 mL phosphate-buffered saline (PBS); and in the sham group (TS), rats with testicular failure and low libido were injected with 0.1 mL of PBS. Results: Vascular endothelial growth factor expression, as the homing signal, in the groups T2, T–, T1, and TS was 2.00±0.5%, 2.95±0.4%, 0.33±0.48%, and 0±0%, respectively. The number of cluster of differentiation (CD)34+ and CD45+ cells in the groups T– and TS was <20%, whereas that in T1 and T2 groups was >30% and >80%, respectively, showing the mobilization of hematopoietic stem cells (HSCs). The number of spermatogenic cells (spermatogonia, primary spermatocytes, secondary spermatocytes, and spermatid) decreased significantly (p<0.05) in TS compared with that in T–, T1, and T2, whereas that in T2 did not show a significant (p>0.05) decrease compared to that in T–. The improvement in libido, based on the number of Leydig cells producing the hormone testosterone for libido expression, did not increase in T1, whereas T2 was able to maintain the number of Leydig cells significantly compared to that between TS and T1. Conclusion: rMSC-CH culture for testicular failure with low libido showed improvement in the functional outcome of the testicle and in repairing Leydig cells.


2017 ◽  
Vol 357 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Long-Wei Hu ◽  
Xiao Wang ◽  
Xin-Qun Jiang ◽  
Li-Qun Xu ◽  
Hong-Ya Pan

2014 ◽  
Vol 11 (3) ◽  
pp. 239-246 ◽  
Author(s):  
Thanaphum Osathanon ◽  
Boontharika Chuenjitkuntaworn ◽  
Nunthawan Nowwarote ◽  
Pitt Supaphol ◽  
Panunn Sastravaha ◽  
...  

Angiology ◽  
2009 ◽  
Author(s):  
M. Ugurlucan ◽  
D. Furlani ◽  
L.-L. Ong ◽  
C. Yerebakan ◽  
W.-W. Wang ◽  
...  

2011 ◽  
Vol 23 (1) ◽  
pp. 247
Author(s):  
T. H. Kim ◽  
B. G. Jeon ◽  
S. L. Lee ◽  
G. J. Rho

Mesenchymal stem cells (MSC) are regarded as an attractive source for tissue engineering and regeneration, and bone marrow extract has been commonly used as a source of pluripotent MSC. However, skin tissue has recently been identified as a convenient alternative source of MSC. The present study was focused on the effect of characterised MSC derived from rat on expression of early transcriptional factors, alkaline phosphate (AP) activity, and in vitro differentiation into selected cell lineages. The MSC were isolated from 8-week-old s.d. rat’s ear skin and cultured in advanced DMEM supplemented with 10% fetal bovine serum at 37°C in a humidified atmosphere of 5% CO2 in air. To evaluate AP activity, cells were fixed with 3.7% formaldehyde solution and stained with Western Blue® (Promega, Madison, WI, USA). Expressions of early transcriptional factors (Oct-4, Sox2, and Nanog) were evaluated by RT-PCR. Differentiation into distinct mesenchymal lineages such as adipogenic, osteogenic, and neuron was done by following previously described protocols and assessed by lineage-specific stains. The specific genes in the osteocytes (osteocalcin, osteonectin, osteopontin, and Runx2), adipocytes (pparγ2, adiponectin, and aP2) or neuron (nestin, neurogenin 1, β-tublin, and nerve growth factor) were characterised by RT-PCR. The MSC were positive for AP activity and expressed Oct-4, Sox2, and Nanog. Following induction, MSC were successfully differentiated into adipocytes, osteocytes, and neurons. As adipocytes markers, aP2, pparγ2, and adiponectin were strongly detected in the adipocyte induced cells. Osteonectin, osteocalcin, Runx2, and osteopontin were expressed in the adipocyte induced cells. Futhermore, neuron-specific markers were clearly expressed in the neuronal differentiated cells. In conclusion, MSC have the capability of differentiation into multilineages including adipocytes, osteocytes, and neurons under the specific induction conditions. Skin tissue in rat can serve as an easily accessible and expandable alternative source for MSC harvesting and preclinical applications using an animal model. This work was supported by Grant No. 2007031034040 from Bio-organ and 200908FHT010204005 from Biogreen21, Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document