Shape Optimization of Elliptical and Vaulted Reinforced Concrete Domes

Author(s):  
Mohamed Amine Touzout ◽  
Rachid Chebili

Optimum design in civil structures like domes and vaults is a very old and ongoing research field. These structures are preferably designed to transport loads via membrane action. In this paper, we have considered a reinforced concrete dome and vault, where the bending moment and strain energy were used as objective function to be minimized using genetic algorithm, and model reduction method by proper orthogonal decomposition based on the results of finite element analysis of gradually changed design parameters. The proposed approach results are of a high accuracy compared to finite element based optimization.

2012 ◽  
Vol 446-449 ◽  
pp. 695-698
Author(s):  
Jian Qiang Han ◽  
Xiu Yan Fu ◽  
Jiang Ming Tang

This thesis studies deeply the crack development characteristics, failure pattern, hysteresis curve and the displacement ductility of unbonded precast reinforced concrete frame, by analyzing one unbonded precast reinforced concrete frame under low reversed cyclic load test. We build a model using finite element analysis software to the test piece model analysis, the analysis result agree well with the experimental results. So we build finite element analysis models with different design parameters to analysis the impaction for seismic performance. Numerical analysis results can provide a scientific reference for the unbonded precast frame structure design.


2019 ◽  
Vol 8 (2) ◽  
pp. 4874-4879

In every structure, the super structure and the foundation executed on soil, represent an entire structural system. The analysis of a framed structure while not modeling its foundation system and its rigidity could mislead the axial forces, moments due to bending and due to settlement. It is, thus necessary to hold out the analysis considering the type of soil, foundation and above the sub structure i.e. (super structure). Hence the analysis of the single bay single storied building frame resting on soil (Clayey Soil) is taken for present study. The analysis is carried out using “ANSYS 16.0”. In this paper the effect of soil interaction on building frame design parameters as change of modulus of sub-grade reaction from 0.010 to 0.050 N/mm3 .Shear force, Bending moment and settlements have been studied for different footing sizes of 1mx1m to 4.5mx4.5m the effect of SSI is quantified using finite element analysis. The following conclusions have been drawn from the study, the shear force and axial force value in the beam and column is constant from finite element analysis are not having considerable difference. The analysis is predicting that percentage difference in bending moment in beam, column and footings are at lower EFS value i.e 0.010N/mm3 at lower footing size 1mX1m is greater than when compared to higher EFS value i.e 0.050N/mm3 at higher footing size 4.5mX4.5m which considers soil interaction. But in case of the footings they undergo some settlement the percentage difference of settlement is 14.41% and 6.72% at lower EFS value i.e 0.010N/mm3 at lower footing size 1mx1m when compared to higher EFS value i.e 0.050N/mm3 at higher footing size 4.5mx4.5m respectively, which considers soil interaction.


Author(s):  
John Barrett ◽  
Shawn Kenny ◽  
Ryan Phillips

Pipeline structural integrity is a critical component of pipeline design in extreme environmental conditions. Severe loads may be an issue in pipeline design if differential ground movement is prevalent in the design region, e.g. ground faulting and permafrost heave and settlement. Iceberg or ice keel interaction and large seabed deformations interacting may also be a critical design integrity issue for offshore pipelines in ice environments. Numerical finite element modelling procedures have been developed to assess the bending moment and strain capacity of several pipelines over various typical pipeline parameters. This study looks at the effects of girth-weld imperfection on the bending response of welded pipelines. Limited guidance is provided by pipeline design standards, for example DNV OS-F101 and CSA Z662, as to how to account for girth weld effects on the local buckling response. This paper investigates girth weld effects across a range of practical design parameters. Calibration of the numerical analysis was performed using available data, from full-scale tests and finite element analysis, for girth welded pipes in order to obtain confidence in the numerical procedure. The significance of girth weld effects was to reduce the peak bending moment capacity by 10% whereas strain capacity was reduced by as much as 35% based on the degree of girth weld imperfection. Girth weld effects have been acknowledged in industry, however, further research and physical testing is required to fully understand the problem, as shown in this paper.


1985 ◽  
Vol 12 (1) ◽  
pp. 63-72 ◽  
Author(s):  
I. G. Buckle ◽  
A. R. Dickson ◽  
M. H. Phillips

The destructive testing of three reinforced concrete highway bridges, recently made redundant by road realignment, is summarized. The procedure used to test the bridges to ultimate conditions is described and load capacities of about 20 times class 1 axle loads are reported for all structures. Analyses based on conventional ultimate strength theory can account for only two-thirds of these ultimate loads and then only if second order effects are included. A nonlinear finite element computer program has been developed and used to analyze one of these structures. Excellent prediction of the ultimate load is made by the program. It is therefore suggested that compressive membrane action, which is automatically modelled in the finite element solution, plays a significant role in the enhancement of load capacity.The paper concludes that a more sophisticated approach to the assessment of bridge load capacity is necessary if realistic estimates of actual strength are to be made. Limited experience with a nonlinear finite element program suggests one such approach. If used with care, some relief to the bridge replacement program can be expected. Key words: highway bridges, ultimate load capacity, finite element analysis, reinforced concrete, field testing, compressive membrane action.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2014 ◽  
Vol 1065-1069 ◽  
pp. 19-22
Author(s):  
Zhen Feng Wang ◽  
Ke Sheng Ma

Based on ABAQUS finite element analysis software simulation, the finite element model for dynamic analysis of rigid pile composite foundation and superstructure interaction system is established, which selects the two kinds of models, by simulating the soil dynamic constitutive model, selecting appropriate artificial boundary.The influence of rigid pile composite foundation on balance and imbalance of varying rigidity is analyzed under seismic loads. The result shows that the maximum bending moment and the horizontal displacement of the long pile is much greater than that of the short pile under seismic loads, the long pile of bending moment is larger in the position of stiffness change. By constrast, under the same economic condition, the aseismic performance of of rigid pile composite foundation on balance of varying rigidity is better than that of rigid pile composite foundation on imbalance of varying rigidity.


Sign in / Sign up

Export Citation Format

Share Document