Effect of the Slope on the Undrained Bearing Capacity of Shallow Foundation

Author(s):  
Messaoud Baazouzi ◽  
Mekki Mellas ◽  
Abdelhak Mabrouki ◽  
Djamel Benmeddour

The bearing capacity of shallow foundation near slope has always been one of the subjects of major interest in geotechnical engineering for researchers and practical engineers. This study focuses on the numerical analysis of the undrained bearing capacity for a strip footing near a slope, and subjected to a centered vertical load, using the explicit finite difference code FLAC (Fast Lagrangian Analysis of Continua). Theoretical and experimental studies confirm that, when a strip footing is near a slope, the bearing capacity must be assessed using reduction coefficients. In this study, several geometrical and mechanical parameters have been considered in order to evaluate the effect of the slope on the undrained bearing capacity. The numerical values have been compared with those available in the literature. The results show the influence on the undrained bearing capacity of the location of the footing with respect to the slope.

2021 ◽  
Vol 889 (1) ◽  
pp. 012076
Author(s):  
Chamjeet Singh ◽  
Jagdeep Singh ◽  
Sandeep Singh ◽  
Vikas Kumar

Abstract The skirt footings are considered as alternate to enhance the bearing capacity of shallow foundation on sandy soil as an alternate of deep foundation. The experimental data of paper titled “Performance of skirt strip footing subjected to eccentric inclined load was consider as base for validation and other parameters of material for numerical investigation for different conditions. Numerical analysis was conducted to determine the behavior of two-sided skirt footing on eccentric loading with different angle and projections provided to skirt. The study reveals good impact of skirt angle and skirt projection lengths on load capacity of footing system


Author(s):  
Oleksandr Trofymchuk ◽  
Oleh Savytskyi

Methods have been developed for numerical analysis the vertical oscillations of rigid plate with a liquidimpermeable sole rested on the layer (Biot’s model) with a rigidly restrained lower edge. The plate sole is liquid-impermeable. The analysis of the impedance functions depending on the oscillation frequency, the geometry of the system and the mechanical parameters of the soil model is carried out.


2021 ◽  
Vol 31 (2) ◽  
pp. 117-137
Author(s):  
Sagar Jaiswal ◽  
Vinay Bhushan Chauhan

Abstract The use of geosynthetic reinforcement to enhance the ultimate load-bearing capacity and reduce the anticipated settlement of the shallow foundation has gained sufficient attention in the geotechnical field. The improved performance of the shallow foundation is achieved by providing one or more layers of geosynthetics below the foundation. The full wraparound technique proved to be efficient for the confinement of soil mass and reduction in settlement of foundation however lacks the literature to ascertain the performances of such footing under dynamic loading. In view of the above, the present study examines the effect of geosynthetic layers having a finite length with full wraparound ends as a reinforcement layer, placed horizontally at a suitable depth below the foundation using the finite element modeling (FEM) and evaluates the ultimate load-bearing capacity of a strip footing resting on loose and dense coarse-grained earth beds under seismic loading and further compared to those of footing resting on unreinforced earth bed. Moreover, the effect of horizontal seismic acceleration coefficient (kh) on the ultimate load-bearing capacity has been investigated by varying kh from 0.1 to 0.6 at an interval of 0.1, for both reinforced and unreinforced earth bed having loose and dense soil strata. Furthermore, this study demonstrates that by adopting the new practice of using the geosynthetic reinforcement with the full wraparound ends in foundations, it is possible to support relatively heavier structures under static as well as dynamic loading without allowing large footing settlements. From the outcomes of the present study, it is noted that the ultimate load-bearing capacity of footing resting on loose and dense sand bed found to be improved by 60% and 18% for soils having friction angle of 25° and 40°, respectively compared to respective unreinforced earth beds under static condition.


Sign in / Sign up

Export Citation Format

Share Document