Lawsone Sensitized ZnO Photoelectrodes for Dye Sensitized Solar Cells

2013 ◽  
Vol 24 ◽  
pp. 140-145 ◽  
Author(s):  
Shubhangi S. Khadtare ◽  
Sandesh R. Jadkar ◽  
Sunita Salunke-Gawali ◽  
Habib M. Pathan

Innovations in materials technology in the fields of photovoltaics play an important role in the paradigm shift from fossil fuels to renewable energy sources. The use of solar energy is one of the most important problems in energy utilization. Dye sensitized solar cell (DSSC) technology has been recognized as a competitor to the well developed thin film solar cells. In the present investigation, we have fabricated a device using natural Lawsone (Heena) dye which was used to sensitize zinc oxide (ZnO) films. ZnO seed layer was deposited using chemical bath deposition and slurry was used to deposit ZnO films followed by sintering at 450°C for 30 minutes in air. Performance of nanostructure ZnO photoelectrode using lawsone dye as a function of residence time in the dye solution was studied. For 20 hour dye loading time, we were observed power conversion efficiency around 0.5% which is more as compared to 5 and 14 hours dye loading time.

RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 42013-42023 ◽  
Author(s):  
Ting-Kuang Chang ◽  
Yun Chi

The sensitizer TF-tBu_C3F7 has shown the highest overall efficiencies of JSC = 18.47 mA cm−2, VOC = 767 mV, FF = 0.71 and PCE = 10.05% under simulated one sun irradiation, due to the fine balance between dye loading and reduced charge recombination.


2019 ◽  
Vol 23 (04n05) ◽  
pp. 599-610 ◽  
Author(s):  
Siddhartha Kumar ◽  
Whitney Webre ◽  
Jacob Schaffner ◽  
Sheikh M. S. Islam ◽  
Francis D’Souza ◽  
...  

The first example of A2B2 tetrabenzoporphyrin (KW-4) was synthesized, characterized and evaluated as a sensitizer for dye-sensitized solar cells. UV-vis and fluorescence spectroscopy revealed red-shifted and broadened absorption spectra of A2B2 tetrabenzoporphyrin as compared with its A2 dibenzo- and A2B2 dibenzoporphyrin analogues, which is a desired feature of dyes for dye-sensitized solar cells. DFT calculations also indicate favorable electron density distribution on the HOMO and LUMO of KW-4. However, the power conversion efficiency of the solar cell based on tetrabenzoporphyrin KW-4 displayed inferior performance than that of the solar cell based on A2 dibenzoporphyrin KW-2. The lower performance of the KW-4 cell was ascribed to two factors: the low lying LUMO energy level leading to less efficient electron injection and the “flat geometry” of the dye on TiO2surface facilitating charge recombination and decreasing dye loading. The investigation of anchoring group effect suggests that the acrylic acid group is a better anchoring group than pentadienyl carboxylic acid.


2012 ◽  
Vol 60 (12) ◽  
pp. 2025-2028 ◽  
Author(s):  
Ji-Hong Kim ◽  
Kyung-Ju Lee ◽  
Ji-Hyung Roh ◽  
Sang-Woo Song ◽  
Jae-Ho Park ◽  
...  

2014 ◽  
Vol 16 (16) ◽  
pp. 7448-7454 ◽  
Author(s):  
P. S. Archana ◽  
Arunava Gupta ◽  
Mashitah M. Yusoff ◽  
Rajan Jose

Tungsten doping in TiO2 nanowires led to increased photocurrent density resulting from increased lifetime and dye-loading compared to niobium doping.


RSC Advances ◽  
2018 ◽  
Vol 8 (56) ◽  
pp. 31943-31949 ◽  
Author(s):  
Md Ataul Mamun ◽  
Qiquan Qiao ◽  
Brian A. Logue

Functionalized carboxylate deposition involves deposition of molecules from the gas phase and is an alternative dye loading technique to dip-coating. It was used to create a monolayer of large molecular weight dyes on TiO2, providing multiple advantages to dip-coating.


Solar Energy ◽  
2016 ◽  
Vol 136 ◽  
pp. 553-559 ◽  
Author(s):  
Antonio Tricoli ◽  
Noushin Nasiri ◽  
Hongjun Chen ◽  
Anna S. Wallerand ◽  
Marco Righettoni

2011 ◽  
Vol 1303 ◽  
Author(s):  
Xuan Pan ◽  
Yong Zhao ◽  
Changhong Chen ◽  
Zhaoyang Fan

ABSTRACTThe titanium dioxide (TiO2) nanoparticle (NP) structure has higher surface area and dye loading value to increase photon absorption while the nanotube (NT) can suppress the random walk phenomena to enhance carrier collection. In this work, hydrothermal method was utilized to infiltrate the TiO2 nanotube array by TiO2 nanoparticles with the aim of combining the advantages of both nanostructures to improve dye sensitized solar cells (DSSCs) efficiency. Structure morphology, device performance, and electrochemical properties were investigated. SEM observation confirmed that around 10 nm TiO2 nanoparticles uniformly covered the NT wall. TiO2 NT samples at three different lengths: 8 μm, 13 μm and 20 μm, decorated with different amount of nanoparticles were studied to optimize the structure for light absorption and electron transport to achieve high solar conversion efficiency. Electrochemical impedance spectroscopy (EIS) was also employed to investigate the cells’ parameters: electron lifetime (τ), diffusion length (Ln) et al, to gain insight on the device performance. The incident photon conversion efficiency (IPCE) was also reported.


2012 ◽  
Vol 22 (22) ◽  
pp. 11364 ◽  
Author(s):  
Elisa Dell'Orto ◽  
Luisa Raimondo ◽  
Adele Sassella ◽  
Alessandro Abbotto

2014 ◽  
Vol 44 (1) ◽  
pp. 244-251 ◽  
Author(s):  
Linsen Zhang ◽  
Kai Jin ◽  
Suzhen Li ◽  
Lizhen Wang ◽  
Yong Zhang ◽  
...  

2017 ◽  
Vol 11 (3) ◽  
pp. 213-219 ◽  
Author(s):  
Amrik Singh ◽  
Devendra Mohan ◽  
Singh Ahlawat ◽  
R Richa

Dye sensitized solar cells (DSSCs) were fabricated using silver doped ZnO films deposited on ITO glass by spin coating method. The crystalline nature of ZnO films was analysed with XRD and SEM technique was used for morphological studies. The XRD pattern confirmed the presence of single phase hexagonal wurtzite ZnO structure, without the presence of secondary phase. The crystallite size of ZnO decreased from 31 nm to 25 nm with increase in doping to 1.5mol% of silver. The UV-visible transmission of the prepared ZnO film was found to be 70-90% and it decreased with increase in doping to 0.5mol% Ag and increased in the film doped with 1.5mol% Ag. The band gap values of the ZnO films with 0, 0.5 and 1.5mol% of silver, determined from Tauc plot, were 3.269, 3.235 and 3.257 eV, respectively. The absorbance peaks of the N719 dye loaded ZnO films were obtained at the wavelengths 310, 350 and 538 nm. The N719 dye loaded ZnO film doped with 0.5mol% Ag has the highest absorbance in the visible region as compared to other two samples. The fill factor values of the pure and ZnO doped with 0.5 and 1.5mol% Ag were 0.47, 0.48 and 0.42, respectively. The short circuit density values for ZnO, ZnO:Ag0.5% and ZnO:Ag1.5% were found to be 1.50, 1.55 and 1.15 A?m/cm2, respectively. The calculated photon to electron efficiencies for the ZnO films with 0, 0.5 and 1.5mol% of silver were 0.42%, 0.44% and 0.27%, respectively. Consequently future prospective of such type of dopants in ZnO film based dye sensitized solar cells seems to be bright.


Sign in / Sign up

Export Citation Format

Share Document