Formation of a Hollow Binary Alloy Nanosphere: A Kinetic Monte Carlo Study

2009 ◽  
Vol 7 ◽  
pp. 11-17 ◽  
Author(s):  
Alexander V. Evteev ◽  
Elena V. Levchenko ◽  
Irina V. Belova ◽  
Graeme E. Murch

Results of kinetic Monte Carlo simulation of the formation of a hollow nanosphere by interdiffusion from a core-shell binary system are presented for the first time. The faster diffusing species is located in the core whilst the slower diffusing species form the shell. With its self-generated vacancy composition all stages of the hollow sphere formation process are observed in our model: interdiffusion, the supersaturation of the core of the nanosphere by vacancies, precipitation of pores and eventual void formation. Results of this simulation confirm the experimental conclusions that interdiffusion accompanied by the Kirkendall effect and Kirkendall porosity is one of the mechanisms responsible for the formation of hollow nano-objects.

Author(s):  
Jing-hua Guo ◽  
Jin-Xiang Liu ◽  
Hongbo Wang ◽  
Haiying Liu ◽  
Gang Chen

In this work, combining the first-principles calculations with kinetic Monte Carlo (KMC) simulations, we constructed an irregular carbon bridge on the graphene surface and explored the process of H migration...


AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045306
Author(s):  
Georg Daniel Förster ◽  
Thomas D. Swinburne ◽  
Hua Jiang ◽  
Esko Kauppinen ◽  
Christophe Bichara

2001 ◽  
Vol 138 (3) ◽  
pp. 250-263 ◽  
Author(s):  
Mirosława Rak ◽  
Marek Izdebski ◽  
Andrzej Brozi

2018 ◽  
Vol 122 (47) ◽  
pp. 27044-27058 ◽  
Author(s):  
Timo Weckman ◽  
Mahdi Shirazi ◽  
Simon D. Elliott ◽  
Kari Laasonen

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4523
Author(s):  
Qilu Ye ◽  
Jianxin Wu ◽  
Jiqing Zhao ◽  
Gang Yang ◽  
Bin Yang

The mechanism of the clustering in Al-Mg-Si-Cu alloys has been a long-standing controversial issue. Here, for the first time, the mechanism of the clustering in the alloy was investigated by a Kinetic Monte Carlo (KMC) approach. In addition, reversion aging (RA) was carried out to evaluate the simulation results. The results showed that many small-size clusters formed rapidly in the early stages of aging. With the prolongation of aging time, the clusters merged and grew. The small clusters formed at the beginning of aging in Al-Mg-Si-Cu alloy were caused by initial vacancies (quenching vacancies). The merging and decomposition of the clusters were mainly caused by the capturing of vacancies, and the clusters had a probability to decompose before reaching a stable size. After repeated merging and decomposition, the clusters reach stability. During RA, the complex interaction between the cluster merging and decomposition leaded to the partial irregular change of the hardness reduction and activation energy.


1988 ◽  
Vol 108 ◽  
pp. 426-427
Author(s):  
Hideyuki Suzuki ◽  
Katsuhiko Sato

SN1987A gave us the first opportunity to study the supernova core directly by providing us the neutrino signal from the core. The observational data of the neutrino flux detected by Kamiokande[1] and IMB[2] show surprisingly good agreements with the theoretical predictions as a whole[3,4]. The fundamental concept of the collapse driven supernova explosion is confirmed for the first time. On the other hand, there are some puzzles. The most peculiar feature of the data is the 7 seconds gap of the Kamiokande data. The first 8 events of Kamiokande were detected in 2 seconds, following the 7 seconds gap and the last 3 events in 4 seconds. Of course just only 7 seconds gap is not unnatural if small neutrino flux come. But there were detected 3 events after the gap. These 3 events may not be produced by the weak flux. We can estimate the time integrated luminosity of corresponding to the last 3 events and get the large value such as 7 · 1052erg [5]. Can we get out of this inconsistency, 3 events after the 7 seconds gap? If not, we may need to consider some nonstandard mechanism of the neutrino emission at the late time. In order to investigate the probability of the case in which there is a 7 seconds gap before 3 events, we have performed Monte Carlo simulations for the simple model of neutrino flux.


Sign in / Sign up

Export Citation Format

Share Document