Preparation and Properties of CuInS2 Thin-Film by Successive Ionic Layer Adsorption and Reaction (SILAR) Method

2007 ◽  
Vol 280-283 ◽  
pp. 877-880
Author(s):  
Zheng Guo Jin ◽  
Yong Shi ◽  
Ji Jun Qiu ◽  
Xiao Xin Liu

CuInS2 thin films were deposited on galss substrate by successive ionic layer absorption and reaction (SILAR) method at room temperature. CuCl2, InCl3, and Na2S were used as precursor materials. The thin films were obtained during the dipping of 20-40 cycles and after annealing in the N2 atmosphere at 500°C. The characterization of the film was carried out by X-ray diffraction, scanning electron microscopy, optical absorption spectrum and X-ray photoelectron spectra. Quantification of the XPS peaks shows that the molar ratio of Cu:In:S of the film is close to the stoichiometry of CuInS2. XRD result demonstrated that the formed compound is CuInS2 with chalcopyrites crystal structure. Direct band gap was found to be 1.5eV from optical absorption spectrum.

1972 ◽  
Vol 38 (297) ◽  
pp. 605-613 ◽  
Author(s):  
E. R. Vance ◽  
B. W. Anderson

SummaryX-ray, density, refractive index, and optical absorption measurements have been made on metamict Ceylon zircons. The appearance of a previously reported anomalous optical absorption spectrum in low Ceylon zircons has been associated with small particles of cubic or tetragonal zirconium dioxide in a radiation-damaged zircon lattice, in both heated and unheated stones. No evidence of a previously reported second phase was detected in intermediate Ceylon zircons.


1998 ◽  
Vol 76 (4) ◽  
pp. 411-413
Author(s):  
Yixing Zhao ◽  
Gordon R Freeman

The energy and asymmetry of the optical absorption spectrum of solvated electrons, es- , change in a nonlinear fashion on changing the solvent through the series HOH, CH3OH, CH3CH3OH, (CH3)2CHOH, (CH3)3COH. The ultimate, quantum-statistical mechanical, interpretation of solvated electron spectra is needed to describe the solvent dependence. The previously reported optical spectrum of es- in tert-butanol was somewhat inaccurate, due to a small amount of water in the alcohol and to limitations of the infrared light detector. The present note records the remeasured spectrum and its temperature dependence. The value of the energy at the absorption maximum (EAmax) is 155 zJ (0.97 eV) at 299 K and 112 zJ (0.70 eV) at 338 K; the corresponding values of G epsilon max (10-22 m2 aJ-1) are 1.06 and 0.74. These unusually large changes are attributed to the abnormally rapid decrease of dielectric permittivity of tert-butanol with increasing temperature. The band asymmetry at 299 K is Wb/Wr = 1.8.Key words: optical absorption spectrum, solvated electron, solvent effects, tert-butanol, temperature dependence.


2016 ◽  
Vol 109 (26) ◽  
pp. 263104 ◽  
Author(s):  
Baomin Wang ◽  
Xuewei Cao ◽  
Zhan Wang ◽  
Yong Wang ◽  
Kaihui Liu

Author(s):  
P. Krebs

Some years ago Jay-Gerin and Ferradini attempted to establish a correlation between the optical absorption spectrum and the mobility of excess electrons in various polar solvents (J. Chem. Phys.


Sign in / Sign up

Export Citation Format

Share Document