Three-Dimensional Slit Width Measurement for Long Precision Slot Dies

2005 ◽  
Vol 295-296 ◽  
pp. 343-348 ◽  
Author(s):  
M. Furukawa ◽  
Wei Gao ◽  
Hideki Shimizu ◽  
S. Kiyono ◽  
M. Yasutake ◽  
...  

This paper describes a measurement method for three-dimensional (3D) slit width deviations of long precision slot dies, which are essential for process control in manufacturing. A sensor unit consisting of two laser probes with their measurement axes aligned along the same Z-directional line but with opposite measurement directions, is placed between the two parts of the slot die to scan the two opposing surfaces of the parts along the X- and Y-axes. The variation of the sum of the laser probe outputs, which shows the deviation of the distance between the two surfaces, corresponds to the deviation of the slit width in the Z-direction. The 3D slit width deviations can be obtained accurately through scanning the entire surface in the X Y plane. In addition, the surface flatness of the parts can also be measured accurately by adding one more probe. Measurement experiments have been conducted on a precision grinding machine. The measurement results have indicated that the 3D slit width deviations and flatness can be measured with a repeatability error of less than 1 micron, which meets the requirement for quality control of slot dies.

Author(s):  
M. Furukawa ◽  
Wei Gao ◽  
Hideki Shimizu ◽  
S. Kiyono ◽  
M. Yasutake ◽  
...  

2003 ◽  
Vol 69 (7) ◽  
pp. 1013-1017 ◽  
Author(s):  
Masaru FURUKAWA ◽  
Wei GAO ◽  
Hiroki SHIMIZU ◽  
Satoshi KIYONO ◽  
Mutsumi YASUTAKE ◽  
...  

2012 ◽  
Vol 164 ◽  
pp. 330-333
Author(s):  
Zhi Hua Sha ◽  
Zong Nan Zhang ◽  
Sheng Fang Zhang

In order to decrease the development costs, shorten the developing cycle, improve the overall performance and reduce the environmental pollution of the wafer precision grinding machine, the structure, transmission, movement of grinding system for wafer precision grinding machine is analyzed based on mechanical system mechanics, the three-dimensional model of the grinding system is established, based on frame animation technology and via secondary development of Pro/E in the environment of VS 2008, the virtual prototype of grinding system for wafer precision grinding machine is developed, the kinematics and dynamics simulation of the grinding system is realized.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 724-732
Author(s):  
Changchun Ji ◽  
Yudong Wang

AbstractTo investigate the distribution characteristics of the three-dimensional flow field under the slot die, an online measurement of the airflow velocity was performed using a hot wire anemometer. The experimental results show that the air-slot end faces have a great influence on the airflow distribution in its vicinity. Compared with the air velocity in the center area, the velocity below the slot end face is much lower. The distribution characteristics of the three-dimensional flow field under the slot die would cause the fibers at different positions to bear inconsistent air force. The air velocity of the spinning centerline is higher than that around it, which is more conducive to fiber diameter attenuation. The violent fluctuation of the instantaneous velocity of the airflow could easily cause the meltblowing fiber to whip in the area close to the die.


1954 ◽  
Vol 25 (9) ◽  
pp. 865-868 ◽  
Author(s):  
Harry Letaw ◽  
Lawrence M. Slifkin ◽  
William M. Portnoy

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Akhsani Nur Amalia ◽  

Time efficiency in production is very supportive of fulfilling consumer demand. The track balance problem can be solved by taking measurements first. This measurement aims to determine the parameters that cause an imbalance in the production line. The first step that needs to be done is measuring the track balance before optimization. Rank Postional Weight is heuristic’s systematic approach method is used to measure the balance of the car CVT belt production line in a grinding machine. The measurement results show that it is not good with a smothness index of 130.48 minutes, the product produced is only 97.5% of the set target, the performance of the work station is 80.56%. Improvements in several work stations in order to improve the balance of the trajectory, namely in visual checks, smoothing surfaces and shapes, measuring products by rearranging the order.


2019 ◽  
Vol 9 (8) ◽  
pp. 1598 ◽  
Author(s):  
Fang ◽  
Huang ◽  
Xu ◽  
Cheng ◽  
Chen ◽  
...  

The probe tip of a micro-coordinate Measuring Machine (micro-CMM) is a microsphere with a diameter of hundreds of microns, and its sphericity is generally controlled within tens to hundreds of nanometers. However, the accurate measurement of the microsphere morphology is difficult because of the small size and high precision requirement. In this study, a measurement method with two scanning probes is proposed to obtain dimensions including the diameter and sphericity of microsphere. A series of maximum cross-sectional profiles of the microsphere in different angular directions are scanned simultaneously and differently by the scanning probes. By integrating the data of these maximum profiles, the dimensions of the microsphere can be calculated. The scanning probe is fabricated by combining a quartz tuning fork and a tungsten tip, which have a fine vertical resolution at a sub-nano scale. A commercial ruby microsphere is measured with the proposed method. Experiments that involve the scanning of six section profiles are carried out to estimate the dimensions of the ruby microsphere. The repeatability error of one section profile is 15.1 nm, which indicates that the measurement system has favorable repeatability. The mainly errors in the measurement are eliminated. The measured diameter and roundness are all consistent with the size standard of the commercial microsphere. The measurement uncertainty is evaluated, and the measurement results show that the method can be used to measure the dimensions of microspheres effectively.


2020 ◽  
Vol 10 (6) ◽  
pp. 2030
Author(s):  
Lai Hu ◽  
Yipeng Li ◽  
Jun Zha ◽  
Yaolong Chen

In the global machining industry, ultra-precision/ultra-high-speed machining has become a challenge, and its requirements are getting higher and higher. The challenge of precision grinding lies in the difficulty in ensuring the various dimensions and geometric accuracy of the final machined parts. This paper mainly uses the theory of a multi-body system to propose a “double accuracy” theory of manufacturing and measurement. Firstly, the grinding theory with an accuracy of 0.1 μm and the precision three-coordinate measuring machine theory with an accuracy of 0.3 μm are deduced. Secondly, the two theories are analyzed. Aiming to better explain the practicability of the “double accuracy” theory, a batch of motorized spindle parts is processed by a grinding machine. Then the precision three-coordinate measuring machine is used to measure the shape and position tolerances such as the roundness, the squareness, the flatness, and the coaxiality. The results show that the reached roundness of part A and B is 5 μm and 0.5 μm, the squareness is 3 μm and 4.5 μm, and the coaxiality tolerance is 1.2 μm, respectively.


Sign in / Sign up

Export Citation Format

Share Document