Research on the Virtual Prototype of Grinding System for Wafer Precision Grinding Machine Based on Mechanical System Mechanics

2012 ◽  
Vol 164 ◽  
pp. 330-333
Author(s):  
Zhi Hua Sha ◽  
Zong Nan Zhang ◽  
Sheng Fang Zhang

In order to decrease the development costs, shorten the developing cycle, improve the overall performance and reduce the environmental pollution of the wafer precision grinding machine, the structure, transmission, movement of grinding system for wafer precision grinding machine is analyzed based on mechanical system mechanics, the three-dimensional model of the grinding system is established, based on frame animation technology and via secondary development of Pro/E in the environment of VS 2008, the virtual prototype of grinding system for wafer precision grinding machine is developed, the kinematics and dynamics simulation of the grinding system is realized.

2012 ◽  
Vol 479-481 ◽  
pp. 2351-2354 ◽  
Author(s):  
Bing Wu ◽  
Zen Ju Wei

Obstacle robot crawler is a very complex mechanical products. Crawler robot obstacle for traditional development pattern of the development cycle there is a long, complicated process, development costs are too high, difficult issues such as performance testing, this twin-tracked to the more impaired actual robot context of the study, the application of simulation technology robot design and development research. Use of 3D modeling software Pro / E and two-body dynamics simulation software to create more obstacles the robot tracked the virtual prototype model, the virtual prototype model based on a variety of simulation experiments, and the test results analysis.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Conghui Liang ◽  
Hao Gu ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

SUMMARYA mechanical design and dynamics walking simulation of a novel tripod walking robot are presented in this paper. The tripod walking robot consists of three 1-degree-of-freedom (DOF) Chebyshev–Pantograph leg mechanisms with linkage architecture. A balancing mechanism is mounted on the body of the tripod walking robot to adjust its center of gravity (COG) during walking for balancing purpose. A statically stable tripod walking gait is performed by synchronizing the motions of the three leg mechanisms and the balancing mechanism. A three-dimensional model has been elaborated in SolidWorks® engineering software environment for a characterization of a feasible mechanical design. Dynamics simulation has been carried out in the MSC.ADAMS® environment with the aim to characterize and to evaluate the dynamic walking performances of the proposed design with low-cost easy-operation features. Simulation results show that the proposed tripod walking robot with proper input torques, gives limited reaction forces at the linkage joints, and a practical feasible walking ability on a flatten ground.


Biochemistry ◽  
1990 ◽  
Vol 29 (45) ◽  
pp. 10317-10322 ◽  
Author(s):  
Lennart Nilsson ◽  
Agneta Aahgren-Staalhandske ◽  
Ann Sofie Sjoegren ◽  
Solveig Hahne ◽  
Britt Marie Sjoeberg

2014 ◽  
Vol 940 ◽  
pp. 132-135 ◽  
Author(s):  
Yi Fan Zhao ◽  
Ling Sha ◽  
Yi Zhu

Established the dynamics simulation analysis model of crane hoisting mechanism based on the theory of dynamics in Adams software, and then through the three dimensional model of lifting mechanism dynamics entities, the constraints, load, drive can be added, the motion law can be defined to simulation analysis the change of the force of wire rope, the change of displacement, velocity and acceleration of lifting weight in the lifting process. On the basis of the simulation results, it can make a great improvement for the structure of crane and provide a meaningful theoretical reference for the hoisting machinery innovation design.


Author(s):  
Rapeepan Promyoo ◽  
Hazim El-Mounayri ◽  
Kody Varahramyan

In this paper, a developed three-dimensional model for AFM-based nanomachining is applied to study mechanical scratching at the nanoscale. The correlation between the scratching conditions, including applied force, scratching depth, and distant between any two scratched grooves, and the defect mechanism in the substrate/workpiece is investigated. The simulations of nanoscratching process are performed on different crystal orientations of single-crystal gold substrate, Au(100), Au(110), and Au(111). The material deformation and groove geometry are extracted from the final locations of atoms, which are displaced by the rigid indenter. The simulation also allows for the prediction of normal and friction forces at the interface between the indenter and substrate. An AFM is used to conduct actual scratching at the nanoscale, and provide measurements to which the MD simulation predictions are compared. The predicted forces obtained from MD simulation compares qualitatively with the experimental results.


2015 ◽  
Vol 25 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Chidambar B. Jalkute ◽  
Kailas D. Sonawane

Amyloid-β (Aβ)-degrading enzymes are known to degrade Aβ peptides, a causative agent of Alzheimer's disease. These enzymes are responsible for maintaining Aβ concentration. However, loss of such enzymes or their Aβ-degrading activity because of certain genetic as well as nongenetic reasons initiates the accumulation of Aβ peptides in the human brain. Considering the limitations of the human enzymes in clearing Aβ peptide, the search for microbial enzymes that could cleave Aβ is necessary. Hence, we built a three-dimensional model of angiotensin-converting enzyme (ACE) from <i>Stigmatella aurantiaca</i> using homology modeling technique. Molecular docking and molecular dynamics simulation techniques were used to outline the possible cleavage mechanism of Aβ peptide. These findings suggest that catalytic residue Glu 434 of the model could play a crucial role to degrade Aβ peptide between Asp 7 and Ser 8. Thus, ACE from <i>S. aurantiaca</i> might cleave Aβ peptides similar to human ACE and could be used to design new therapeutic strategies against Alzheimer's disease.


2013 ◽  
Vol 364 ◽  
pp. 365-369
Author(s):  
Xiao Lin Deng ◽  
Heng Bing Wei

This paper studies and designs the gems feeding manipulator, makes a detailed analysis of the overall structure and working principle of the manipulator, and establishes the three-dimensional model of the manipulator. The virtual prototype model of the manipulator is built in ADAMS software. Use simulation analysis functions of ADAMS to carry out kinematics and dynamics simulation analysis on manipulator, obtaining parameter curves of the manipulator such as position, speed and torque, which verifies it feasible to use manipulator to unload and load gems, achieving the design requirements.


2012 ◽  
Vol 542-543 ◽  
pp. 532-536
Author(s):  
Nan Li ◽  
Yun Peng Zhao

Torpedo shell Modeling is a very important part in the design process. However, the traditional method of torpedo shell modeling is only the GUI of CAD drawing software. If there is change in individual parameters, designers have to start again from scratch. Such method will waste of resources. This paper set up the torpedo shell parametric design process with secondary development language UG / Open API, and user-oriented menu creation tool UG / Open UIStyler of UG,which is a three-dimensional modeling software, So that designers can be directly obtained three-dimensional model of the torpedo shell needing to enter the necessary design parameters. Meanwhile the designers can save design resources, and it helps optimize the latter part of the torpedo shell design.


2011 ◽  
Vol 65 ◽  
pp. 148-151
Author(s):  
Chan Juan Chen ◽  
Guang Meng Fu ◽  
Shuai Gao

It discusses the development method of the direct slicing software using on three-dimensional model which can run in the Pro/ENGINEER Wildfire 4.0 environment. The author uses the secondary development tool Pro/TOOLKIT, which is used in Visual Studio 2008, to write the dynamic link library files which can run in the Pro/E environment with VC++ language. This paper provides the detailed analysis and discussion about the problems encountered in the course, and gives out the capable solutions.


2005 ◽  
Vol 295-296 ◽  
pp. 343-348 ◽  
Author(s):  
M. Furukawa ◽  
Wei Gao ◽  
Hideki Shimizu ◽  
S. Kiyono ◽  
M. Yasutake ◽  
...  

This paper describes a measurement method for three-dimensional (3D) slit width deviations of long precision slot dies, which are essential for process control in manufacturing. A sensor unit consisting of two laser probes with their measurement axes aligned along the same Z-directional line but with opposite measurement directions, is placed between the two parts of the slot die to scan the two opposing surfaces of the parts along the X- and Y-axes. The variation of the sum of the laser probe outputs, which shows the deviation of the distance between the two surfaces, corresponds to the deviation of the slit width in the Z-direction. The 3D slit width deviations can be obtained accurately through scanning the entire surface in the X Y plane. In addition, the surface flatness of the parts can also be measured accurately by adding one more probe. Measurement experiments have been conducted on a precision grinding machine. The measurement results have indicated that the 3D slit width deviations and flatness can be measured with a repeatability error of less than 1 micron, which meets the requirement for quality control of slot dies.


Sign in / Sign up

Export Citation Format

Share Document