Effect of Water Absorption Rates on Fracture Toughness of Sisal Textile Fiber Reinforced Composites

2005 ◽  
Vol 297-300 ◽  
pp. 213-218 ◽  
Author(s):  
Yang Bae Jeon ◽  
Do Won Seo ◽  
Jae Kyoo Lim

Using natural fibers that are inexpensive, lightweight and biodegradable, as the reinforcement for composites is difficult due to their poor interfacial properties between hydrophilic fiber and hydrophobic polymer matrices. It is necessary to evaluate fracture toughness of natural fiber reinforced composites according to water absorption rates to improve mechanical performance of those. In this study, compact tension fracture test was conducted to evaluate fracture toughness with the various specimens. The value of fracture toughness has the tendency to decrease as water absorption rate increases. And different surface treatment methods and different polymer matrices have influence on the value of fracture toughness.

2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


Author(s):  
Haasith Chittimenu ◽  
Monesh Pasupureddy ◽  
Chandrasekar Muthukumar ◽  
Senthilkumar Krishnasamy ◽  
Senthil Muthu Kumar Thiagamani ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


2015 ◽  
Vol 50 (9) ◽  
pp. 1145-1160 ◽  
Author(s):  
Kabiru Mustapha ◽  
Ebenezer Annan ◽  
Salifu T Azeko ◽  
Martiale G Zebaze Kana ◽  
Winston O Soboyejo

Author(s):  
Vijay Kumar Mahakur ◽  
Sumit Bhowmik ◽  
Promod Kumar Patowari

Nowadays, the utilization of natural fiber reinforced composite has increased frequently. These natural fibers have significant features like low cost, renewable, and, more importantly, biodegradable in nature, making them to be utilized for various industrial sectors. However, the massive demand for natural fiber reinforced composites (NFRC), forces them to be machined and operated, which is required for countless areas in multiple industries like automotive, marine, aerospace and constructions. But before obtaining the final shape of any specimen, this specimen should come across numerous machining processes to get the desired shape and structure. Therefore, the present review paper focused on the various aspects during conventional and unconventional machining of the NFRC. It covers the work by exploring the influence of all input variables on the outcome produced after machining the NFRC. Various methodologies and tools are also discussed in this article for reducing the machining defects. The machining of the NFRC is found as a challenging task due to insufficient interlocking between the matrix and fibers, and minimum knowledge in machining characteristics and appropriate input parameters. Thus, this review is trying to assist the readers to grasp a basic understanding and information during the machining of the NFRC in every aspect.


2019 ◽  
Vol 23 ◽  
pp. 6-30
Author(s):  
Volkan Uğraşkan ◽  
Abdullah Toraman ◽  
A. Binnaz Hazar Yoruç

In early composite materials, the use of petroleum based fibers such as glass and carbon fibers, aramid etc. was common. In order to reduce the dependency on petroleum based sources and environmental pollution, researchers have focused on the search for alternative sources. Natural fibers are abundant, recyclable and biodegradable plant derived materials. Besides, thanks to good physical, thermal and mechanical properties, natural fibers become promising alternative for composites. This review includes information about natural fiber reinforced composites’ components, manufacturing methods, mechanical properties and applications.


Author(s):  
G. Manikandan ◽  
V. Jaiganesh ◽  
R. Ravi Raja Malarvannan ◽  
M. Vinothkumar

For future generation, to keep the world green, the cognizance on natural fiber increases. The natural fiber-reinforced composites have an advantage of being lightweight, renewable, biodegradable, and cheap, eco-friendly. So there is a need to investigate the potential of natural fibers and their composites, which can be used in highly demanding situations. An attempt has been made in present work to explore the possible use of a variety of wild grown fibers in nature in the development of new composites for load carrying structures. This article is detailed about the extraction process of natural fibers and characterization of natural fiber-reinforced composites. The reinforced composites made by the use of Tamarindus Indica (Tamarind) fibers with epoxy and bisphenol resin. The experimental investigations of the natural fiber composites were carried out by means of Scanning Electron Microscope and the mechanical properties such as tensile, flexural, compression and hardness properties of the composites without chemically treated fibers were reported.


2016 ◽  
Vol 47 (8) ◽  
pp. 2153-2183 ◽  
Author(s):  
Azam Ali ◽  
Khubab Shaker ◽  
Yasir Nawab ◽  
Madeha Jabbar ◽  
Tanveer Hussain ◽  
...  

There is a growing interest in the development of natural fiber-reinforced composites, most likely due to their wide availability, low cost, environment friendliness, and sustainability. The market size for natural fiber-reinforced composites is projected to reach $5.83 billion by 2019, with a compound annual growth rate of 12.3%. The composite materials reinforced with wood, cotton, jute, flax or other natural fibers fall under this category. Meanwhile, some major factors limiting the large scale production of natural fiber composites include the tendency of natural fiber to absorb water, degradation by microorganisms and sunlight and ultimately low strength and service life. This paper has focused to review the different natural fiber treatments used to reduce the moisture absorption and fiber degradation. The effect of these treatments on the mechanical properties of these composites has also been summarized.


Sign in / Sign up

Export Citation Format

Share Document