Preparation and Characterization of PZT Thin Films on ITO/Glass Substrate by CSD

2006 ◽  
Vol 301 ◽  
pp. 41-44 ◽  
Author(s):  
Tomoya Ohno ◽  
Masayuki Fujimoto ◽  
Hisao Suzuki

This paper describes the deposition of PZT thin films on soda-lime glass substrate with ITO bottom electrode by CSD (Chemical Solution Deposition). The transmittance of the obtained PZT thin film on ITO/glass substrate was about 60 % in the visible light region. The deposited transparent PZT thin film exhibited the ferroelectricity of Pr=36.3 μC/cm2 and Ec=71.3 kV/cm. In addition, the piezoelectric property of the resultant PZT thin film was relatively large and exhibited the measured effective d33 of 120 pC/N after the polarization.

2018 ◽  
Vol 102 (6) ◽  
pp. 3341-3353 ◽  
Author(s):  
Jean‐Thomas Fonné ◽  
Ekaterina Burov ◽  
Emmanuelle Gouillart ◽  
Sergey Grachev ◽  
Hervé Montigaud ◽  
...  

2018 ◽  
Vol 19 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Yoyok Cahyono ◽  
Eddy Yahya ◽  
Mochamad Zainuri ◽  
Suminar Pratapa ◽  
Darminto

2018 ◽  
Vol 96 (7) ◽  
pp. 804-809 ◽  
Author(s):  
Harun Güney ◽  
Demet İskenderoğlu

The undoped and 1%, 2%, and 3% Cd-doped MgO nanostructures were grown by SILAR method on the soda lime glass substrate. X-ray diffractometer (XRD), ultraviolet–visible spectrometer, scanning electron microscope, photoluminescence (PL), and X-ray photoelectron spectroscopy measurements were taken to investigate Cd doping effects on the structural, optical, and morphological properties of MgO nanostructures. XRD measurements show that the samples have cubic structure and planes of (200), (220) of MgO and (111), (200), and (220) of CdO. It was observed that band gaps increase with rising Cd doping rate in MgO thin film. The surface morphology of samples demonstrates that MgO nanostructures have been affected by the Cd doping. PL measurements show that undoped and Cd-doped MgO thin films can radiate in the visible emission region.


2021 ◽  
Vol 14 (3) ◽  
pp. 249-253

Abstract: In this paper, suitability of thallium sulphide films were investigated as an alternative to conventional silicon and germanium that were used as window layers in solar cells. Thin films were deposited on soda lime glass (SLG) substrates in a chemical bath containing Thallium Chloride (TlCl2) and Thiourea (NH2)2CS which was conditioned at 80 ºC for about 5 hours to deposit the films. Effects of annealing on the film samples at 300 ºC and 350 ºC were studied respectively by use of UV-VIS Avantes electrophotometer and Four-Point-Probe (FPP) machine in the light region with wavelength range from 200 nm to 1000 nm. The results obtained suggest that the thin films obtained are good materials for optoelectronics. The absorption spectra exhibited a relatively high energy band-gap. Materials of this nature are good for window layers which serve as passage to the absorber layer where needed charge carriers are produced. Keywords: Thin film, Thallium Sulphide, Window layer, Optoelectronics, Solar cells.


Sign in / Sign up

Export Citation Format

Share Document