Influences of the Factors on Fatigue Crack Growth Retardation Behavior due to Multiple Overloads

2006 ◽  
Vol 306-308 ◽  
pp. 121-126
Author(s):  
Seon Jin Kim ◽  
Seok Hwan Ahn ◽  
Yu Sik Kong ◽  
Sang Woo Kwon

Constant K fatigue crack growth tests were performed by applying an intermediate multiple overloads for S45C steel. The purpose of this study is to investigate effects of specimen thickness at various baseline stress intensity factor range levels (Kb), the application position of the overload (a/W) and the application frequency of the overload (OLHz) on fatigue crack growth retardation behavior. The principal results are summarized as follows. The number of retardation cycles for the constant baseline stress intensity factor level (Kb ) decreases with increasing specimen thickness. The normalized number of retardation cycles ( Nd / Nc ) decreases with increasing specimen thickness. But, at Kb = 45 MPa(m)1/2, the cycle increases with increasing specimen thickness.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 664
Author(s):  
Kenichi Masuda ◽  
Sotomi Ishihara ◽  
Noriyasu Oguma

Fatigue crack growth experiments are performed using A7075-T6 compact tension (CT) specimens with various thicknesses t (1–21 mm). The stress intensity factor at the crack opening level Kop is measured, and the effects of t and the stress intensity factor range ΔK on Kop are investigated. In addition, the change in Kop value due to specimen surface removal is investigated. Furthermore, we clarify that the radius of curvature of the leading edge of the fatigue crack decreases as t becomes thinner. Using the three-dimensional elastoplastic finite element method, the amount of plastic lateral contraction (depression depth d) at the crack tip after fatigue loading is calculated quantitatively. The following main experimental results are obtained: In the region where ΔK is 5 MPam1/2 or higher, the rate of fatigue crack growth da/dN at a constant ΔK value increases as t increases from 1 to 11 mm. The da/dN between t = 11 and 21 mm is the same. Meanwhile, in the region where ΔK is less than 5 MPam1/2, the effect of t on da/dN is not observed. The effects of t and ΔK on the da/dN–ΔK relationship are considered physically and quantitatively based on d.


2003 ◽  
Vol 125 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Muhammad Irfan-ul-Haq ◽  
Nesar Merah

This study addresses the effect of temperature on fatigue crack growth (FCG) behavior of CPVC. FCG tests were conducted on CPVC SEN tensile specimens in the temperature range −10 to 70°C. These specimens were prepared from 4-in. injection-molded pipe fittings. Crack growth behavior was studied using LEFM concepts. The stress intensity factor was modified to include the crack closure and plastic zone effects. The effective stress intensity factor range ΔKeff gave satisfactory correlation of crack growth rate (da/dN) at all temperatures of interest. The crack growth resistance was found to decrease with temperature increase. The effect of temperature on da/dN was investigated by considering the variation of mechanical properties with temperature. Master curves were developed by normalizing ΔKeff by fracture strain and yield stress. All the da/dN-ΔK curves at different temperatures were collapsed on a single curve. Crazing was found to be the dominant fatigue mechanism, especially at high temperature, while shear yielding was the dominant mechanism at low temperatures.


2005 ◽  
Vol 297-300 ◽  
pp. 1120-1125 ◽  
Author(s):  
Myung Hwan Boo ◽  
Chi Yong Park

In order to study the influence of stress ratio and WC grain size, the characteristics of fatigue crack growth were investigated in WC-Co cemented carbides with two different grain sizes of 3 and 6 µm. Fatigue crack growth tests were carried out over a wide range of fatigue crack growth rates covering the threshold stress intensity factor range DKth. It was found that crack growth rate da/dN against stress intensity factor range DK depended on stress ratio R. The crack growth rate plotted in terms of effective stress intensity factor range DKeff still exhibited the effect of microstructure. Fractographic examination revealed brittle fracture at R=0.1 and ductile fracture at R=0.5 in Co binder phase. The amount of Co phase transformation for stress ratio was closely related to fatigue crack growth characteristics.


2009 ◽  
Vol 417-418 ◽  
pp. 653-656
Author(s):  
Ya Zhi Li ◽  
Jing He ◽  
Zi Peng Zhang

The behavior of plasticity induced fatigue crack closure (PICC) in middle tension specimen was analyzed by the elastic-plastic finite element method. For the constant-K (CK) loading cases, the opening stress intensity factor are independent of crack length. The level of increases with the maximal applied stress intensity factor for given load ratio and increases with for fixed . The in plane strain state is much smaller than that in plane stress state. The results under CK loadings can be deduced to constant amplitude cyclic loading case during which the load ratio, maximal load level, crack length and specimen thickness are all the factors affecting the crack closure effect. The phenomena revealed in the analysis are beneficial in understanding the driving force mechanism of the fatigue crack growth.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaochen Zhang ◽  
Hanwen Li ◽  
Weiying Meng ◽  
Tian Zhang ◽  
Zhenpeng Liu ◽  
...  

This paper presents the fatigue crack growth test of 7N01 aluminum alloy specimens with different thicknesses under three-point bending. Moreover, the effect of specimen thickness on the fatigue crack growth life was analyzed. The influence mechanism of the thickness size effect on the stress intensity factor was explored. A three-dimensional stress intensity factor calculation model based on the thickness size effect was proposed by combining the finite element method and the interaction integral method. The results show that the fatigue crack growth life of 7N01 aluminum alloy decreases with the increase of specimen thickness. The numerical solutions of the stress intensity factor (the proposed model) are higher than the analytical solutions (the traditional formula) in the steady-state crack growth stage. The difference between numerical solutions and analytical solutions increases with the increase of crack growth length and specimen thickness. Compared with the analytical solutions, the relationship curve between crack length “a” and cycle number “N” from the numerical solutions is closer to the experimental data. This result proves that the proposed calculation model can correct the stress intensity factor with the thickness size effect.


Author(s):  
Yoshihito Yamaguchi ◽  
Kunio Hasegawa ◽  
Yinsheng Li

Crack closure during fatigue crack growth is an important phenomenon for predicting fatigue crack growth amount. Many experimental data show that fatigue cracks close at not only negative loads but also positive loads during constant amplitude loading cycles, depending on applied stress levels. The Appendix A-4300 in the ASME Code Section XI provides two equations of fatigue crack growth rates expressed by stress intensity factor range for ferritic steels under negative stress ratio. The boundary of two fatigue crack growth rates is classified by the magnitude of applied stress intensity factor range with the consideration of crack closure. The objective of this paper is to investigate the influence of the magnitude of the stress intensity factor range on crack closure. Fatigue tests have been performed on ferritic steel specimens in air environment at room and high temperatures. Crack closures were obtained as a parameter of stress ratio. It was found that crack closure occurs at a smaller applied stress intensity factor range than the definition given by the Appendix A-4300.


2013 ◽  
Vol 671-674 ◽  
pp. 969-973 ◽  
Author(s):  
Guang Yu Shi ◽  
Xiao Xiao Li ◽  
Gao Nan Zhang

This paper studies the evaluation of the proper stress intensity factor ranges in the fracture mechanics-based fatigue analysis of the rib-to-deck welded joints of orthotropic steel decks. It is pointed out in the paper that the stress intensity factor ranges used in Paris law for the fatigue crack growth at a rib-to-deck welded joint can not be taken as a value proportional to the corresponding stress ranges since the compressive stresses are the dominant transverse stresses in the cyclic stresses under the action of truck traffics. The proper fatigue design loads to characterize the standard truck loading for the accurate calculation of the tensile transverse stresses at the rib-to-deck joints is also discussed in the paper. It is shown that the loads from two neighboring wheel-axles of heavy trucks have to be taken into account.


2006 ◽  
Vol 324-325 ◽  
pp. 251-254 ◽  
Author(s):  
Tai Quan Zhou ◽  
Tommy Hung Tin Chan ◽  
Yuan Hua

The behavior of crack growth with a view to fatigue damage accumulation on the tip of cracks is discussed. Fatigue life of welded components with initial crack in bridges under traffic loading is investigated. The study is presented in two parts. Firstly, a new model of fatigue crack growth for welded bridge member under traffic loading is presented. And the calculate method of the stress intensity factor necessary for evaluation of the fatigue life of welded bridge members with cracks is discussed. Based on the concept of continuum damage accumulated on the tip of fatigue cracks, the fatigue damage law suitable for steel bridge member under traffic loading is modified to consider the crack growth. The proposed fatigue crack growth can describe the relationship between the cracking count rate and the effective stress intensity factor. The proposed fatigue crack growth model is then applied to calculate the crack growth and the fatigue life of two types of welded components with fatigue experimental results. The stress intensity factors are modified by the factor of geometric shape for the welded components in order to reflect the influence of the welding type and geometry on the stress intensity factor. The calculated and measured fatigue lives are generally in good agreement, at some of the initial conditions of cracking, for a welded component widely used in steel bridges.


Sign in / Sign up

Export Citation Format

Share Document