Metamodel-Based Shape Optimization of Connecting Rod Considering Fatigue Life

2006 ◽  
Vol 306-308 ◽  
pp. 211-216 ◽  
Author(s):  
Tae Hee Lee ◽  
J.J. Jung

To optimize a connecting rod satisfying fatigue life, metamodel-based design optimization is proposed. To approximately predict both volume and fatigue life of connecting rod, kriging metamodel is constructed based on maximin eigenvalue sampling. Fatigue analysis is accomplished for the calculation of fatigue life. The results of metamodel-based design optimization are compared with those of classical optimization. The advantages of metamodel-based optimization are discussed.

2021 ◽  
Vol 36 (2) ◽  
pp. 144-155
Author(s):  
Ö. Cihan ◽  
M. Bulut

Abstract The connecting rod, as an important part in internal combustion engines, has been most widely used in automotive industry, and its main function is to transfer the reciprocating motion of the piston into the rotatory motion of the crankshaft. In this study, fatigue analysis of the connecting rod is performed numerically for different engine speeds. With this aim, it is attempted to reduce the weight of the connecting rod by choosing the low density and high strength of GFRP and CFRP composite materials instead of structural steel. In this way, it is possible to improve the engine efficiency with saving unnecessary balancing weights as well as reducing the cost of the connecting rod. In the current study, the connecting rod was modeled using Solidworks software, and its CAD model was transferred to the ANSYS/Workbench software for Finite Element Analyses (FEA). In FEA, fatigue analyses were performed to determine fatigue parameters such as alternating stress, deformation, fatigue life and safety factor according to Soderberg’s fatigue model. Results from this study showed that alternating stress and safety factor reached a critical value between piston pin end and crank end near to the piston pin end. Alternating stress values of the GFRP and CFRP connecting rods were much lower than those of structural steel rod. In contrast to reduction of the weight by 1/5, fatigue life of the connecting rod with structural steel material was much greater than those of GFRP and CFRP providing a higher safety factor compared with composite materials.


2011 ◽  
Vol 3 (1) ◽  
pp. 152-160
Author(s):  
A. Souf A. Souf ◽  
◽  
K. Talea K. Talea ◽  
A. Bakali A. Bakali ◽  
M. Talea M. Talea ◽  
...  

2008 ◽  
Vol 44-46 ◽  
pp. 733-738 ◽  
Author(s):  
Bing Rong Miao ◽  
Wei Hua Zhang ◽  
Shou Ne Xiao ◽  
Ding Chang Jin ◽  
Yong Xiang Zhao

Railway vehicle structure fatigue life consumption monitoring can be used to determine fatigue damage by directly or indirectly monitoring the loads placed on critical vehicle components susceptible to failure from fatigue damage. The sample locomotive carbody structure was used for this study. Firstly, the hybrid fatigue analysis method was used with Multi-Body System (MBS) simulation and Finite Element Method (FEM) for evaluating the carbody structure dynamic stress histories. Secondly, the standard fatigue time domain method was used in fatigue analysis software FE-FATIGUE and MATLAB WAFO (Wave Analysis for Fatigue and Oceanography) tools. And carbody structure fatigue life and fatigue damage were predicted. Finally, and carbody structure dynamic stress experimental data was taken from this locomotive running between Kunming-Weishe for this analysis. The data was used to validate the simulation results based on hybrid method. The analysis results show that the hybrid method prediction error is approximately 30.7%. It also illustrates that the fatigue life and durability of the locomotive can be predicted with this hybrid method. The results of this study can be modified to be representative of the railway vehicle dynamic stress test.


2019 ◽  
Vol 17 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Hafida Kahoul ◽  
Samira Belhour ◽  
Ahmed Bellaouar ◽  
Jean Paul Dron

Purpose This paper aims to present the fatigue life behaviour of upper arm suspension. The main objectives are to predict the fatigue life of the component and to identify the critical location. In this analysis, three aluminium alloys were used for the suspension, and their fatigue life was compared to select the suitable material for the suspension arm. Design/methodology/approach CAD model was prepared using Solid Works software, and finite element analysis was done using ANSYS 14.0 software by importing the Parasolid file to ANSYS. The model is subjected to loading and boundary conditions; the authors consider a vertical force with constant amplitude applied at the bushing that connected to the tire, the others two bushing that connected to the body of the car are constraint. Tetrahedral elements given enhanced results as compared to other types of elements; therefore, the elements (TET 10) are used. The maximum principal stress was considered in the linear static analysis, and fatigue analysis was done using strain life approach. Findings Life and damage are evaluated and the critical location was considered at node 63,754. From the fatigue analysis, aluminium alloys 7175-T73 (Al 90%-Zn 5.6%-Mg 2.5% -… …) and 2014-T6 (Al 93.5%-Cu 4.4%-Mg 0.5%… …) present a similar behaviour as compared to 6061-T6 (Al 97.9%-Mg 1.0%-Si 0.6%… … .); in this case of study, these lather are considered to be the materials of choice to manufacture the suspension arms; but 7175-T73 aluminium alloys remain the material with a better resistance to fatigue. Originality/value By the finite element analysis method and assistance of ANSYS software, it is able to analyse the different car components from varied aspects such as fatigue, and consequently save time and cost. For further research, the experimental works under controlled laboratory conditions should be done to determine the validation of the result from the software analysis.


2002 ◽  
Vol 45 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Seog-Young HAN ◽  
Jang-Keun LIM

2013 ◽  
Vol 401-403 ◽  
pp. 151-154
Author(s):  
Jia Lian Shi ◽  
Chang Liang Xu ◽  
Gui Yun Meng ◽  
Da Dong Ma

The fatigue rupture is the main form on eccentric axis. Afterwards, make the load function by the eccentric axis and transient dynamics analysis of 4 eccentric axis by ANSYS software. Confirm the dangerous section and nodes. Finally, make fatigue analysis of vibration device with 4 eccentric axis, get the accumulation fatigue factor and get the fatigue life.


Author(s):  
Sukhwinder S. Lamba ◽  
Curtis A. Rhodes

Abstract This paper presents size and shape optimization of a recyclable packing material. Shell thickness and shape was optimized to prevent contact of surfaces within the packing material. Thus optimization was used to improve cushioning characteristics of the packing material.


2008 ◽  
Vol 8 (23) ◽  
pp. 4338-4345 ◽  
Author(s):  
M. Omid ◽  
S.S. Mohtasebi ◽  
S.A. Mireei ◽  
E. Mahmoodi

Sign in / Sign up

Export Citation Format

Share Document