Nonlinear Analysis of Pressurized Piping Elbows Subjected to Out-of-Plane Bending

2006 ◽  
Vol 306-308 ◽  
pp. 351-356 ◽  
Author(s):  
Asnawi Lubis ◽  
Jamiatul Akmal

The behavior of piping elbows under bending and internal pressure is more complicated than expected. The main problem is that the coupling of bending and internal pressure is nonlinear; the resulting stress and displacement cannot be added according to the principle of superposition. In addition, internal pressure tends to act against the effect caused by the bending moment. If bending moment ovalise the elbow cross-section, with internal pressure acting against this deformation, then the ovalised cross section deform back to the original circular shape. It is then introduced the term “pressure reduction effect”, or in some literature, “pressure stiffening effect”. Current design piping code treats the pressure reduction effect equally for in-plane (closing and opening) moment and outof- plane moment. The aim of this paper is to present results of a detailed finite element analysis on the non-linear behavior of piping elbows of various geometric configurations subject to out-of-plane bending and internal pressure. Specifically the standard Rodabaugh & George nonlinear pressure reduction equations for in-plane closing moment are checked in a systematic study for out-of-plane moment against nonlinear finite element analysis. The results show that the pressure stiffening effects are markedly different for in-plane and out-of-plane bending.

2017 ◽  
Vol 62 (3) ◽  
pp. 1881-1887
Author(s):  
P. Ramaswami ◽  
P. Senthil Velmurugan ◽  
R. Rajasekar

Abstract The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA) and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench) results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h). By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.


Author(s):  
Satoshi Nagata ◽  
Toshiyuki Sawa ◽  
Takashi Kobayashi ◽  
Hirokazu Tsuji

This paper reports the results of finite element analysis representing the sealing performance tests on the slip-on type pipe flange connections for 8 inch and 16 inch. The flange connections are subjected to internal pressure and bending moment. Internal pressure is applied by helium gas and the bending moment is loaded through 4 points bending equipment. Gas leak rates are measured by pressure decay method. During the test, the variations in the axial bolt force are monitored for all the bolts by strain gages. The pipe stress at the junction of pipe and flange is also measured. Finite element analysis simulates the tests and the simulated results are compared with the measured data. Then the behaviors of the slip-on type flange connections under internal pressure and bending moment as well as the sealing performance are clarified by the experiment and the finite element simulation.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

The present paper determines collapse moments of pressurized 30°–180° pipe bends incorporated with initial geometric imperfection under out-of-plane bending moment. Extensive finite element analyses are carried out considering material as well as geometric nonlinearity. The twice-elastic-slope method is used to determine collapse moment. The results show that initial imperfection produces significant change in collapse moment for unpressurized pipe bends and pipe bends applied to higher internal pressure. The application of internal pressure produces stiffening effect to pipe bends which increases collapse moment up to a certain limit and with further increase in pressure, collapse moment decreases. The bend angle effect on collapse moment reduces with the increase in internal pressure and bend radius. Based on finite element results, collapse moment equations are formed as a function of the pipe bend geometry parameters, initial geometric imperfection, bend angle, and internal pressure for elastic-perfectly plastic material models.


Author(s):  
Lv Feng ◽  
Zhou Gengyu ◽  
Qian Haiyang

The super pipe nozzles in nuclear power plants are usually designed to be in compliance with the requirements of Class 2 piping of Section III of the ASME Boiler and Pressure Vessel Code. The stress indices B2 and stress intensification factor i are required for the stress evaluation. In the past two decades, the hot extrusion forming technology has been widely used to manufacture those nozzles, instead of traditional insert weldolets. However, previous extruded nozzle stress analyses have shown B2 that the calculated stresses may exceed the limits in some working conditions. The objective of present study is to determine the stress indices and stress intensification factor for an extruded nozzle of the supper pipe by the finite element method and to evaluate the conservatism of those factors from the ASME Code formulae. In this paper, a three-dimensional finite element model of an extruded nozzle is developed. Four load cases are considered, which are corresponding to an in-plane bending moment and an out-plane bending moment applied at the run pipe side and at the branch pipe side, respectively. The magnitude of bending moment is assumed to be 1000Nm. The stress indices B2r, B2b, C2r, C2b, K2r and K2b, where the subscript r and b refer to the run pipe and B2r the branch pipe, are calculated based on the finite element analysis results. The stress intensification factor ir and ib are determined by the empirical formula: ir = C2r*K2r/2 and ib = C2b*K2b/2. Further, the developed factors are compared with those calculated from the ASME code formulae. It is found that the stress indices B2r and B2b obtained from the linear elastic finite element analysis are conservative. Currently, the values of B2r and B2b gained from the ASME code formulae are more appropriate for the stress evolution. The stress intensification factors ir and ib obtained from the analytical determination are lower than those calculated from the ASME code formula. For the extrude nozzle studied, the factor ir decreases 30% and the factor ib decreases about 3.3%.


2000 ◽  
Vol 122 (4) ◽  
pp. 431-436 ◽  
Author(s):  
J. Chattopadhyay ◽  
D. K. Nathani ◽  
B. K. Dutta ◽  
H. S. Kushwaha

Elastic-plastic finite element analysis has been carried out to evaluate collapse moments of six elbows with elbow factors varying from 0.24 to 0.6. The loading conditions of combined in-plane closing/opening bending moment and varying degree of internal pressure are considered in the analysis. For each case, collapse moment is obtained by twice elastic slope method from the moment versus end-rotation curve. Based on these results, two closed-form equations are proposed to evaluate the collapse moments of elbows under combined internal pressure and in-plane closing and opening bending moment. [S0094-9930(00)00103-7]


Author(s):  
Mahesh Kulkarni ◽  
Vivek Dewangan

Piping caters a major role in the process industries wherein stress intensification factor (SIF) express the Piping flexibility of the system. A typical Piping system consists of combination of pipes and various fittings with intersection geometries namely bend, tee, reducer, etc. A SIF is a multiplier on nominal bending stress so that the effect of geometry and welding can be considered in a flexibility analysis. An attempt has been made to compare the SIF values among ASME Piping B31.3, Welded Research Council (WRC) Bulletin 329, Paulin Research Group (PRG) empirical data and shell-based finite element analysis (FEA) for various tee sections based on in-plane and out-plane bending moments through this paper. The bending moment which causes tee to open/close in the plane formed by two limbs of tee is called in-plane bending moment. The bending moment which causes branch of tee to displace out of the plane retaining run pipe steady is called Out-plane bending moment. ASME B31.3 provide guidelines to evaluate SIF values through empirical formulation as per Appendix-D with few limitations listed below. 1. Valid for d/D < 0.5 only 2. Non-conservative for 0.5 < d/D < 1.0 3. Valid for D/T ≤ 100 4. SIF values calculated with respect to header pipe. There is no difference in SIF values for header and branch pipe and it is the average value. WRC 329 was published in 1987 and has not been updated taking ASME B31.3 latest edition into account. PRG carried out SIF for the various sizes and types of tee fittings and prepared correlation equations through detailed FEA using nonlinear regression and test data.


Sign in / Sign up

Export Citation Format

Share Document