Closed-Form Collapse Moment Equations of Elbows Under Combined Internal Pressure and In-Plane Bending Moment

2000 ◽  
Vol 122 (4) ◽  
pp. 431-436 ◽  
Author(s):  
J. Chattopadhyay ◽  
D. K. Nathani ◽  
B. K. Dutta ◽  
H. S. Kushwaha

Elastic-plastic finite element analysis has been carried out to evaluate collapse moments of six elbows with elbow factors varying from 0.24 to 0.6. The loading conditions of combined in-plane closing/opening bending moment and varying degree of internal pressure are considered in the analysis. For each case, collapse moment is obtained by twice elastic slope method from the moment versus end-rotation curve. Based on these results, two closed-form equations are proposed to evaluate the collapse moments of elbows under combined internal pressure and in-plane closing and opening bending moment. [S0094-9930(00)00103-7]

Author(s):  
S Sumesh ◽  
AR Veerappan ◽  
S Shanmugam

Throughwall circumferential cracks (TWC) in elbows can considerably minimize its collapse load when subjected to in-plane bending moment. The existing closed-form collapse moment equations do not adequately quantify critical crack angles for structurally distorted cracked pipe bends subjected to external loading. Therefore, the present study has been conducted to examine utilizing elastic-plastic finite element analysis, the influence of structural distortions on the variation of critical TWC of 90° pipe bends under in-plane closing bending moment without and with internal pressure. With a mean radius ( r) of 50 mm, cracked pipe bends were modeled for three different wall thickness, t (for pipe ratios of r/ t = 5,10,20), each with two different bend radius, R (for bend ratios of R/r = 2,3) and with varying degrees of ovality and thinning (0 to 20% with increments of 5%). Finite element analyses were performed for two loading cases namely pure in-plane closing moment and in-plane closing bending with internal pressure. Normalized internal pressures of 0.2, 0.4, and 0.6 were applied. Results indicate the modification in the critical crack angle due to the pronounced effect of ovality compared to thinning on the plastic loads of pipe bends. From the finite element results, improved closed-form equations are proposed to evaluate plastic collapse moment of throughwall circumferential cracked pipe bends under the two loading conditions.


Author(s):  
Satoshi Nagata ◽  
Toshiyuki Sawa ◽  
Takashi Kobayashi ◽  
Hirokazu Tsuji

This paper reports the results of finite element analysis representing the sealing performance tests on the slip-on type pipe flange connections for 8 inch and 16 inch. The flange connections are subjected to internal pressure and bending moment. Internal pressure is applied by helium gas and the bending moment is loaded through 4 points bending equipment. Gas leak rates are measured by pressure decay method. During the test, the variations in the axial bolt force are monitored for all the bolts by strain gages. The pipe stress at the junction of pipe and flange is also measured. Finite element analysis simulates the tests and the simulated results are compared with the measured data. Then the behaviors of the slip-on type flange connections under internal pressure and bending moment as well as the sealing performance are clarified by the experiment and the finite element simulation.


2006 ◽  
Vol 306-308 ◽  
pp. 351-356 ◽  
Author(s):  
Asnawi Lubis ◽  
Jamiatul Akmal

The behavior of piping elbows under bending and internal pressure is more complicated than expected. The main problem is that the coupling of bending and internal pressure is nonlinear; the resulting stress and displacement cannot be added according to the principle of superposition. In addition, internal pressure tends to act against the effect caused by the bending moment. If bending moment ovalise the elbow cross-section, with internal pressure acting against this deformation, then the ovalised cross section deform back to the original circular shape. It is then introduced the term “pressure reduction effect”, or in some literature, “pressure stiffening effect”. Current design piping code treats the pressure reduction effect equally for in-plane (closing and opening) moment and outof- plane moment. The aim of this paper is to present results of a detailed finite element analysis on the non-linear behavior of piping elbows of various geometric configurations subject to out-of-plane bending and internal pressure. Specifically the standard Rodabaugh & George nonlinear pressure reduction equations for in-plane closing moment are checked in a systematic study for out-of-plane moment against nonlinear finite element analysis. The results show that the pressure stiffening effects are markedly different for in-plane and out-of-plane bending.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032077
Author(s):  
Ioan Andrei Gîrbacea ◽  
Viorel Ungureanu

Abstract Cold-formed steel Z-purlins with overlapping at the intermediate supports ensures the continuity of the bending moment. A continuous beam with two equal spans of 6 m is investigated under gravity loading using the finite element method. The numerical model includes the beneficial interaction between the Z-purlins and the trapezoidal sheeting. Finite element results show that the screw spacing and sheeting thickness has a limited influence on the resistance of the member. The effect of the overlapping length and detailing of the connection is studied through a parametric study. Six overlaps varying from 100mm to 1200mm (1.6% to 20% of one span) capture the change of the failure mode from the overlap edge to the support region of the purlin. The connection detailing is studied considering multiple bolt/screw patterns. The detailing and length of the overlap connection has a major influence on the moment distribution and consequently on the failure mode. The detailed finite element analysis shows that assuming the beam connection as continuous in 1D beam models lead to an unrealistic bending moment distribution and failure mode. Connecting the bottom flange using screws improves the overall load carrying capacity of the beam especially for short overlap lengths. The increase in resistance is attributed to the restraining effect on the free flange which fails due to distortional buckling.


2010 ◽  
Vol 2010 (0) ◽  
pp. 162-163
Author(s):  
Satoshi NAGATA ◽  
Toshiyuki SAWA ◽  
Takashi KOBAYASHI ◽  
Hirokazu TSUJI

Author(s):  
Peter Carter ◽  
D. L. Marriott ◽  
M. J. Swindeman

This paper examines techniques for the evaluation of two kinds of structural imperfection, namely bulging subject to internal pressure, and out-of-round imperfections subject to external pressure, with and without creep. Comparisons between comprehensive finite element analysis and API 579 Level 2 techniques are made. It is recommended that structural, as opposed to material, failures such as these should be assessed with a structural model that explicitly represents the defect.


Bone ◽  
2021 ◽  
pp. 116206
Author(s):  
M. Revel ◽  
F. Bermond ◽  
F. Duboeuf ◽  
D. Mitton ◽  
H. Follet

Author(s):  
Luiz T. Souza ◽  
David W. Murray

The paper presents results for finite element analysis of full-sized girth-welded specimens of line pipe and compares these results with the behavior exhibited by test specimens subjected to constant axial force, internal pressure and monotonically increasing curvatures. Recommendations for the ‘best’ type of analytical finite element model are given. Comparisons between the behavior predicted analytically and the observed behavior of the experimental test specimens are made. The mechanism of wrinkling is explained and the evolution of the deformed configurations for different wrinkling modes is examined. It is concluded that the analytical tools now available are sufficiently reliable to predict the behavior of pipe in a manner that was not previously possible and that this should create a new era for the design and assessment of pipelines if the technology is properly exploited by industry.


Sign in / Sign up

Export Citation Format

Share Document