Manifold Method and Its Applications for Modeling Fracturing in Solids

2006 ◽  
Vol 306-308 ◽  
pp. 511-516
Author(s):  
Shui Lin Wang ◽  
Xia Ting Feng ◽  
Yu Yong Jiao ◽  
Xiu Run Ge ◽  
Chun Guang Li

A numerical technique based on using manifold elements in finite element method, for modeling propagation of arbitrary cracks in solids, is described. When the region with crack(s)is subjected to external loading and the crack(s) starts to extend, the crack growth may intersect boundaries of nearby finite elements. Those intersected finite elements are replaced by manifold elements. The technique, by which the initial finite element mesh can be kept unchanged during the processes of crack propagation, is called manifold elements in finite element method. The crack growth is governed by the theories of linear elastic fracture mechanics. The stress intensity factors are computed by a contour integral technique and crack trajectory is determined by applying the maximum tangential stress criterion. Finally, test examples are given to verify the new method and the predicted trajectories are compared to experimentally obtained crack growth paths with good agreements

2018 ◽  
Vol 196 ◽  
pp. 01011
Author(s):  
Oleg Negrozov ◽  
Pavel Akimov ◽  
Marina Mozgaleva

The distinctive paper is devoted to solution of multipoint boundary problem of plate analysis (Kirchhoff model) based on combined application of finite element method (FEM) and discrete-continual finite element method (DCFEM). As is known the Kirchhoff-Love theory of plates is a two-dimensional mathematical model that is normally used to determine the stresses and deformations in thin plates subjected to forces and moments. The given domain, occupied by considering structure, is embordered by extended one. The field of application of DCFEM comprises fragments of structure (subdomains) with regular (constant or piecewise constant) physical and geometrical parameters in some dimension (“basic” dimension). DCFEM presupposes finite element mesh approximation for non-basic dimension of extended domain while in the basic dimension problem remains continual. FEM is used for approximation of all other subdomains (it is convenient to solve plate bending problems in terms of displacements). Coupled multilevel approximation model for extended domain and resultant multipoint boundary problem are constructed. Brief information about software systems and verification samples are presented as well.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Huifen Peng ◽  
Yujie Song ◽  
Ye Xia

The cohesive zone model (CZM) has been widely used for numerical simulations of interface crack growth. However, geometrical and material discontinuities decrease the accuracy and efficiency of the CZM when based on the conventional finite element method (CFEM). In order to promote the development of numerical simulation of interfacial crack growth, a new CZM, based on the wavelet finite element method (WFEM), is presented. Some fundamental issues regarding CZM of interface crack growth of double cantilever beam (DCB) testing were studied. The simulation results were compared with the experimental and simulation results of CFEM. It was found that the new CZM had higher accuracy and efficiency in the simulation of interface crack growth. At last, the impact of crack initiation length and elastic constants of material on interface crack growth was studied based on the new CZM. These results provided a basis for reasonable structure design of composite material in engineering.


Sign in / Sign up

Export Citation Format

Share Document