Numerical Simulation of Impact Crush/Buckling of Circular Tube Using SPH Method

2006 ◽  
Vol 306-308 ◽  
pp. 697-702 ◽  
Author(s):  
Masanori Kikuchi ◽  
Masayuki Miyamoto

SPH (Smoothed Particle Hydrodynamics) method is applied to impact crush/buckling problem of circular tube. It has been known that there are several kinds of buckling modes by axial impact load. First, elastic analyses of the crush/buckling are conducted, and three types of typical crush/buckling shape are obtained. Following the elastic analyses, elastic-plastic analyses were performed to improve the accuracy of the simulation. The shape of the buckling and the energy absorbed by circular tube are discussed.

2014 ◽  
Vol 553 ◽  
pp. 168-173 ◽  
Author(s):  
Maziar Gholami Korzani ◽  
Sergio Andres Galindo-Torres ◽  
David Williams ◽  
Alexander Scheuermann

The study concerns the application of the smoothed particle hydrodynamics (SPH) method within computational fluid dynamics. In the present study, a tank discharge with a falling head is investigated. Water is modelled as a viscous fluid with weak compressibility. An enhanced treatment of the solid boundaries is used within the two-dimensional SPH scheme. The boundaries are represented by a special set of SPH particles that differ from the ones representing the fluid by being immovable, preventing the fluid from leaving the container. Particles with different colors are used to illustrate the sequence of the empting the tank as well as the velocity vectors to show stream lines. A code is developed using C++ to solve all equations explicitly by use of a Verlet algorithm. Results are compared to an analytical solution, and a good agreement is achieved.


2013 ◽  
Vol 760-762 ◽  
pp. 2188-2193
Author(s):  
Wen Hua Chu ◽  
Aman Zhang ◽  
Xiong Liang Yao

There are some extreme conditions in the process of metallic jet penetrating the explosive reaction armor (ERA), such as high instantaneity, large deformation, et al. Based on the smoothed particle hydrodynamics (SPH) method, the generalized density approximate formula is proposed and the Held criterion is introduced. Then the numerical SPH model of metallic jet penetrating the explosive reaction armor is built to study its protection mechanics. The calculation result meets well with the theoretical value. The influences of some parameters, such as thickness of plate and attacking angle, on the protecting effect of explosive reaction armor are analyzed, aiming at providing references for the related engineering application.


Author(s):  
Dmitriy Nikolayevich Trushnikov ◽  
Elena Georgieva Koleva ◽  
Roman Pozolovich Davlyatshin ◽  
Roman Mikhailovich Gerasimov ◽  
Yuriy Vitalievich Bayandin

Abstract Background The actual problem for calculating a shape of free surface of the melt when analyzing the processes of wire-based electron-beam surfacing on the substrate, being introduced into additive manufacturing, is the development of adequate mathematical models of heat and mass transfer. The paper proposed a formulation of the problem of melt motion in the framework of the Lagrangian description. The mathematical statement includes the balance equations for mass, momentum and energy, and physical equations for describing heat and mass transfer. Methods The smoothed particle hydrodynamics method was used for numerical simulation of the process of wire-based electron-beam surfacing on the substrate made from same materials (titanium or steel). A finite-difference analog of the equations is given and the algorithm for solving the problem is implemented. To integrate the discretized equations Verlet method was utilized. Algorithms are implemented in the open software package LAMMPS. Results The numerical simulation results allow the estimation of non-stationary volume temperature distributions, melt flow velocities and pressures, and characteristics of process. Conclusion The possibility of applying the developed mathematical model to describe additive production is shown. The comparison of numerical calculations with experimental studies showed good agreement.


Sign in / Sign up

Export Citation Format

Share Document