Fatigue Strength Evaluation of the Load-Carrying Cruciform Fillet Welded Joints Using Hot-Spot Stress

2006 ◽  
Vol 324-325 ◽  
pp. 1281-1284 ◽  
Author(s):  
Byeong Wook Noh ◽  
Jung I. Song ◽  
Sung In Bae

In this study, fatigue strength of load-carrying cruciform fillet welded joints were evaluated using a new method proposed by Yamada, for geometric or structural stress in welded joint, that is, one-millimeter stress below the surface in the direction corresponding to the expected crack path. Validity of the method is verified by analyzing fatigue test results for load-carrying cruciform welded specimens has different size of weld toe radius, leg length and plate thickness reported in literature. Structural stress concentration factor for 1mm below the surface was calculated by finite element analysis for each specimen respectively. When compared to the basic fatigue resistance curve offered by BS7608, the one-millimeter stress method shows conservative evaluation for load-carrying cruciform fillet welded joints.

Author(s):  
Mikkel L. Larsen ◽  
Vikas Arora ◽  
Marie Lützen ◽  
Ronnie R. Pedersen ◽  
Eric Putnam

Abstract Several methods for modelling and finite element analysis of tubular welded joints are described in various design codes. These codes provide specific recommendations for modelling of the welded joints, using simple weld geometries. In this paper, experimental hot-spot strain range results from a full-scale automatically welded K-node test are compared to corresponding finite element models. As part of investigating the automatically welded K-joint, 3D scans of the weld surfaces have been made. These scans are included in the FE models to determine the accuracy of the FE models. The results are compared to an FE model with a simple weld geometry based on common offshore design codes and a model without any modelled weld. The results show that the FE model with 3D scanned welds is more accurate than the two simple FE models. As the weld toe location of the 3D scanned weld is difficult to locate precisely in the FE model and as misplacement of strain gauges are possible, stochastic finite element modelling is performed to analyse the resulting probabilistic hot-spot stresses. The results show large standard deviations, showing the necessity to evaluate the hot-spot stress method when using 3D scanned welds.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4225-4230
Author(s):  
DAE-JIN KIM ◽  
CHANG-SUNG SEOK ◽  
JAE-MEAN KOO

In this study, fatigue tests to obtain S - N curves and FE analyses to obtain structural stress concentration factors were conducted for two types of fillet welded cruciform joints, that is, load-carrying and non load-carrying types. The obtained S - N curve of the load-carrying joint was changed to that based on hot-spot stress. As a result, the S - N curve of the load-carrying joint based on hot-spot stress almost coincided with that of the non load-carrying joint based on nominal stress. The fatigue strength of a welded joint which has a different geometry from that of the non load-carrying cruciform joint but the same bead profile as that of the non load-carrying cruciform joint could be estimated by using both the structural stress concentration factor at the weld toe position obtained from FEM and the nominal S - N curve of the non load-carrying cruciform joint from experiment.


2006 ◽  
Vol 326-328 ◽  
pp. 995-998
Author(s):  
Myung Hyun Kim ◽  
Chung In Ha ◽  
Sung Won Kang ◽  
Jeong Hwan Kim ◽  
Jae Myung Lee

Fatigue strength assessments with two types of load carrying fillet weldment under out-of-plane bending load have been carried out by using both hot spot stress and structural stress methods. Basis for the derivation of structural stress method is discussed in detail. Finite element analyses using shell elements models have been performed for the fatigue strength assessment of weldments. As a result of the fatigue strength evaluation for load carrying transverse fillet weldment, hot spot stress method is found to be consistent with structural stress method as well as measurement. Hot spot stress, however, estimated for the load carrying longitudinal fillet weldment exhibit large variation with respect to mesh size and element type while the calculated structural stress for the longitudinal fillet weldment is relatively independent of mesh size. The fatigue life estimation according to structural stress has been introduced with the master S-N curve.


1994 ◽  
Vol 29 (4) ◽  
pp. 243-255 ◽  
Author(s):  
S T Lie

An attempt has been made to study, theoretically, the difference in the fatigue behaviour of non-load-carrying and load-carrying fillet welded cruciform joints. In the former case, the pre-existing flaws produced during the welding process will always propagate from the weld toe. Accurate stress analysis using the boundary element method on the load-carrying fillet welded cruciform joints shows that the weld throat, h, should not be less than 1.414 T, or the weld leg length, w, should not be less than 2.0 T, where T is the main plate thickness, for the cracks to initiate from the weld toe. Furthermore, the values of Mk, the correction factor to take into account the presence of the weld, are found to decrease when the weld size is increased for the load-carrying fillet welded joints. The Paris crack propagation law is then computed numerically to obtain the S/N (signal-to-noise) curves for the two welded joints. The non-load-carrying fillet welded joints give 5 per cent higher fatigue life than the load-carrying ones for an applied stress range of 100 N/mm2.


Author(s):  
Nur Syahroni ◽  
Stig Berge

Residual stress may have a significant effect on the fatigue strength of welded joints. As a non-fluctuating stress, it has an effect similar to that of the mean stress. Recently the International Association of Ship Classification Societies (IACS) has issued Common Structural Rules (CSR) for respectively tankers (IACS 2006a) and bulk carriers (IACS 2006b). The effect of mean stress in fatigue design is taken into account in both sets of rules. However, the treatment is quite different, in particular with regard to residual stress and shakedown effects. In the present paper a comparative study of fatigue design procedures of the IACS rules is reported, with emphasis on residual stress effects. Testing was carried out with longitudinal attachment welds in the as-welded condition. The initial residual stress was measured by a sectioning method using strain gages. Hot spot stress was determined experimentally by strain gauges and numerically by finite element analysis using different types of elements. Fatigue testing was carried out and SN-curves were plotted according to the relevant stress as specified by the rules. In order to investigate the shake-down effect of residual stress, testing was performed for several pre-load conditions which could be taken to represent maximum load levels in a load history. The aim of the study is to contribute towards better understanding of the effect of residual stress and shakedown on fatigue strength of welded joints.


2007 ◽  
Vol 348-349 ◽  
pp. 565-568
Author(s):  
C.M. Sonsino ◽  
D. Radaj ◽  
W. Fricke

Some recently developed variants of local concepts for assessing the fatigue strength and structural durability of welded joints are reviewed. These comprise structural stress, notch stress or strain and fracture mechanics concepts. New variants of the structural stress concept are Dong’s gradient stress approach and Xiao-Yamada’s ‘one millimetre stress’ approach. FE meshing rules have been developed for welded joints in thin sheet structures. The concept of fictitious notch rounding is now better substantiated for aluminium alloys. The small-size notch concept is applicable to thin sheet lap joints. The new notch stress intensity factor concept is based on the singular stresses at the sharp weld toe notch. Advanced fracture mechanics concepts combine crack initiation at the seam weld root or nugget edge and crack propagation over the plate thickness resulting in endurable FK values as function of cycles per unit thickness, N/t.


Author(s):  
Till Köder ◽  
Berend Bohlmann

Experimental fatigue analysis of a fillet-welded cover plate detail (‘floating frame’) of small and light craft was carried out at Kiel University of Applied Sciences. The structural detail is an intersection of longitudinal deck stiffener and transverse web frame with a plate thickness of 3.5mm and a doubling length of 100mm. Manual gas metal arc welding was used for the production of the 46mm long transverse fillet welds. The load-controlled constant amplitude fatigue tests at stress ratio R = 0 were supported by 3D finite-element analysis based on laser scans of the weld seams. Structural hot-spot stress, stress linearisation and Xiao and Yamada’s 1mm geometrical stress approaches were applied to the specimens as well as the notch stress concept with reference radii rref = 0.05mm and 1.00mm.


Author(s):  
Jürgen Rudolph ◽  
Ralf Trieglaff ◽  
René Stößlein ◽  
Fabian Hauser

The fatigue assessment of welded joints in different engineering disciplines is usually based on nominal, structural or notch stresses on one hand (elastic concept using component fatigue curves of load controlled test data) and local strains on the other hand (elasto-plastic concept using material fatigue curves of strain-controlled push-pull test data of un-notched and polished standard specimens). The concepts of the first mentioned group are implemented in widespread standards and recommendations such as [1] to [3]. The fatigue assessment procedure of the European standard for unfired pressure vessels (EN 13445-3, Clause 17 & 18 and related annexes) [4] is currently under revision with one focus on the elaboration of user friendly fatigue assessment options for welded components [5]. The current state of the art focuses on the application of an adapted structural hot spot stress approach to the fatigue assessment of welded pressure equipment [5]. Although this is a significant step forward, the implementation of a notch stress approach can furtherly increase the fatigue assessment options by detailed weld seam analysis. The paper focuses on respective methodological proposals and application examples of typical welded joints. The finite element analysis as part of the procedure has to be harmonized with the requirements of the assessment procedure. Of course, the compatibility of the hot spot stress approach and a notch stress approach has to be guaranteed for individual examples. The direct comparison of the different approaches allows for a qualitative evaluation of methods. The application of an appropriate master fatigue curve FAT100 and the limitations with regard of stress/strain ranges in the low cycle fatigue (LCF) regime as well as the fatigue assessment of welded joints with mild weld toe notches is the subject of special considerations. The latest recommendations of German Welding Society (DVS) [6] constitute a reference for the last two subjects raised.


Sign in / Sign up

Export Citation Format

Share Document