A Comparative Study on the Fatigue Evaluation for Weldments under Out-of Plane Bending Load Using Structural Stress and Hot Spot Stress

2006 ◽  
Vol 326-328 ◽  
pp. 995-998
Author(s):  
Myung Hyun Kim ◽  
Chung In Ha ◽  
Sung Won Kang ◽  
Jeong Hwan Kim ◽  
Jae Myung Lee

Fatigue strength assessments with two types of load carrying fillet weldment under out-of-plane bending load have been carried out by using both hot spot stress and structural stress methods. Basis for the derivation of structural stress method is discussed in detail. Finite element analyses using shell elements models have been performed for the fatigue strength assessment of weldments. As a result of the fatigue strength evaluation for load carrying transverse fillet weldment, hot spot stress method is found to be consistent with structural stress method as well as measurement. Hot spot stress, however, estimated for the load carrying longitudinal fillet weldment exhibit large variation with respect to mesh size and element type while the calculated structural stress for the longitudinal fillet weldment is relatively independent of mesh size. The fatigue life estimation according to structural stress has been introduced with the master S-N curve.

2006 ◽  
Vol 20 (25n27) ◽  
pp. 4225-4230
Author(s):  
DAE-JIN KIM ◽  
CHANG-SUNG SEOK ◽  
JAE-MEAN KOO

In this study, fatigue tests to obtain S - N curves and FE analyses to obtain structural stress concentration factors were conducted for two types of fillet welded cruciform joints, that is, load-carrying and non load-carrying types. The obtained S - N curve of the load-carrying joint was changed to that based on hot-spot stress. As a result, the S - N curve of the load-carrying joint based on hot-spot stress almost coincided with that of the non load-carrying joint based on nominal stress. The fatigue strength of a welded joint which has a different geometry from that of the non load-carrying cruciform joint but the same bead profile as that of the non load-carrying cruciform joint could be estimated by using both the structural stress concentration factor at the weld toe position obtained from FEM and the nominal S - N curve of the non load-carrying cruciform joint from experiment.


2007 ◽  
Vol 353-358 ◽  
pp. 2069-2072
Author(s):  
Myung Hyun Kim ◽  
Sung Won Kang ◽  
Chung In Ha ◽  
Jae Myung Lee ◽  
Jeong Hwan Kim ◽  
...  

Two types of load carrying fillet weldment, which are typical weld joints in ship structures, were examined under out-of-plane bending load by using structural stress approach. Finite element analyses using both solid and shell elements models have been performed for the assessment of fatigue strength. Basis for the derivation of structural stress method is discussed in detail. The calculated structural stress values for the fatigue strength evaluation of load carrying fillet weldments are independent of mesh size. In this study, drawbacks and doubts associated with applying the structural method such as the guidance of virtual node method and the application of three-dimensional equilibrium condition for solid model have been discussed accompanied by various case studies. In order to solve the problem of the solid model, the alternative method for solid model by using the equilibrium condition of the nodal force has been introduced.


2006 ◽  
Vol 324-325 ◽  
pp. 1281-1284 ◽  
Author(s):  
Byeong Wook Noh ◽  
Jung I. Song ◽  
Sung In Bae

In this study, fatigue strength of load-carrying cruciform fillet welded joints were evaluated using a new method proposed by Yamada, for geometric or structural stress in welded joint, that is, one-millimeter stress below the surface in the direction corresponding to the expected crack path. Validity of the method is verified by analyzing fatigue test results for load-carrying cruciform welded specimens has different size of weld toe radius, leg length and plate thickness reported in literature. Structural stress concentration factor for 1mm below the surface was calculated by finite element analysis for each specimen respectively. When compared to the basic fatigue resistance curve offered by BS7608, the one-millimeter stress method shows conservative evaluation for load-carrying cruciform fillet welded joints.


2005 ◽  
Vol 29 (11) ◽  
pp. 1488-1493 ◽  
Author(s):  
Chang-Sung Seok ◽  
Dae-Jin Kim ◽  
Jae-Mean Koo ◽  
Jung-Won Seo ◽  
Byeong-Choon Goo

2014 ◽  
Vol 1006-1007 ◽  
pp. 11-17
Author(s):  
Gui Jie Liu ◽  
Yu Zhang ◽  
Basit Farooq

The stress concentration factors (SCFs) is used in the fatigue design for calculating hot-spot stress. However a major issue can be noted that the majority of research results are focused on the SCF distribution of uni-planar tubular joints subjected to the single basic load. By aiming to find the solution of this problem, the distribution of SCFs at the weld toe of a multi-planar tubular DX-joint which is subjected to the two set of the balanced combined loading components at the end of in-plane braces is studied by the finite element method. Thus it is concluded that for the axial plus in-plane bending load case, hot-spot stress location varies between saddle and crown position; while the location is invariably at the saddle position under combined axial plus out-of-plane bending loads. At last the API RP2A equation for predicting hot-spot stress is used for comparison with the finite element analysis results. Meanwhile the distribution of SCFs is also provided, that information indicates the-hot spot location along the weld toe affects the crack initiation.


2020 ◽  
Vol 100 ◽  
pp. 102179
Author(s):  
Shiliu Bao ◽  
Wenhua Wang ◽  
Xin Li ◽  
Haisheng Zhao

Sign in / Sign up

Export Citation Format

Share Document