Analysis of fatigue strength on non-load-carrying and load-carrying fillet welded joints

1994 ◽  
Vol 29 (4) ◽  
pp. 243-255 ◽  
Author(s):  
S T Lie

An attempt has been made to study, theoretically, the difference in the fatigue behaviour of non-load-carrying and load-carrying fillet welded cruciform joints. In the former case, the pre-existing flaws produced during the welding process will always propagate from the weld toe. Accurate stress analysis using the boundary element method on the load-carrying fillet welded cruciform joints shows that the weld throat, h, should not be less than 1.414 T, or the weld leg length, w, should not be less than 2.0 T, where T is the main plate thickness, for the cracks to initiate from the weld toe. Furthermore, the values of Mk, the correction factor to take into account the presence of the weld, are found to decrease when the weld size is increased for the load-carrying fillet welded joints. The Paris crack propagation law is then computed numerically to obtain the S/N (signal-to-noise) curves for the two welded joints. The non-load-carrying fillet welded joints give 5 per cent higher fatigue life than the load-carrying ones for an applied stress range of 100 N/mm2.

2006 ◽  
Vol 324-325 ◽  
pp. 1281-1284 ◽  
Author(s):  
Byeong Wook Noh ◽  
Jung I. Song ◽  
Sung In Bae

In this study, fatigue strength of load-carrying cruciform fillet welded joints were evaluated using a new method proposed by Yamada, for geometric or structural stress in welded joint, that is, one-millimeter stress below the surface in the direction corresponding to the expected crack path. Validity of the method is verified by analyzing fatigue test results for load-carrying cruciform welded specimens has different size of weld toe radius, leg length and plate thickness reported in literature. Structural stress concentration factor for 1mm below the surface was calculated by finite element analysis for each specimen respectively. When compared to the basic fatigue resistance curve offered by BS7608, the one-millimeter stress method shows conservative evaluation for load-carrying cruciform fillet welded joints.


Author(s):  
Wolfgang Fricke

Fatigue is an important design criterion for welded structures subjected to cyclic loading. Several approaches for fatigue strength assessment have been developed which are either based on Woehler S–N curves and damage accumulation rule or on crack propagation law. The paper briefly reviews the different approaches, highlighting their advantages and limitations. In this connection, the problematic distinction between crack initiation and propagation phases is discussed, followed by considerations about some parameters which have large influence on the fatigue behaviour of welded joints but are considered differently in the approaches, such as plate thickness and stress gradient effects, multiaxial stress states, welding-induced distortions and residual stresses. Finally, ways of improving the fatigue behaviour of welded structures, either during design by reducing the stress concentration or during fabrication by improved quality or post-weld treatment or else by special material characteristics, are addressed. Emphasis will be placed on recent developments and challenges for the future from a personal perspective of the author.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1249
Author(s):  
Yixun Wang ◽  
Yuxiao Luo ◽  
Yuki Kotani ◽  
Seiichiro Tsutsumi

The existing S-N curves by effective notch stress to assess the fatigue life of gusset welded joints can result in reduced accuracy due to the oversimplification of bead geometries. The present work proposes the parametric formulae of stress concentration factor (SCF) for as-welded gusset joints based on the spline model, by which the effective notch stress can be accurately calculated for fatigue resistance assessment. The spline model is also modified to make it applicable to the additional weld. The fatigue resistance of as-welded and additional-welded specimens is assessed considering the geometric effects and weld profiles. The results show that the error of SCFs by the proposed formulae is proven to be smaller than 5%. The additional weld can increase the fatigue life by as great as 9.4 times, mainly because the increasing weld toe radius and weld leg length lead to the smaller SCF. The proposed series of S-N curves, considering different SCFs, can be used to assess the welded joints with various geometric parameters and weld profiles.


2012 ◽  
Vol 12 (01) ◽  
pp. 179-194 ◽  
Author(s):  
TAO CHEN ◽  
QIAN-QIAN YU ◽  
XIANG-LIN GU ◽  
XIAO-LING ZHAO

This paper reports an experimental study on the use of carbon fiber-reinforced polymer (CFRP) sheets to strengthen non-load-carrying cruciform welded joints subjected to fatigue loading. Failure modes and corresponding fatigue lives were recorded during tests. Scatter of test results was observed. Thereafter, a series of numerical analyses were performed to study the effects of weld toe radius, the number of CFRP layers and Young's modulus of reinforced materials on local stress concentration at a weld toe. It was found that fatigue life of such welded connections can be enhanced because of the reduction of stress concentration caused by CFRP strengthening. Parametric study indicates that the weld toe radius and the amount of CFRP are the key parameters influencing the stress concentration factors and stress ranges of the joint. Enhancement of modulus for adhesive and CFRP sheets can also be beneficial to the fatigue performance to some extent.


Author(s):  
Shivdayal Patel ◽  
B. P. Patel ◽  
Suhail Ahmad

Welding is one of the most used joining methods in the ship industry. However, residual stresses are induced in the welded joints due to the rapid heating and cooling leading to inhomogenously distributed dimensional changes and non-uniform plastic and thermal strains. A number of factors, such as welding speed, boundary conditions, weld geometry, weld thickness, welding current/voltage, number of weld passes, pre-/post-heating etc, influence the residual stress distribution. The main aim of this work is to estimate the residual stresses in welded joints through finite element analysis and to investigate the effects of boundary conditions, welding speed and plate thickness on through the thickness/surface distributions of residual stresses. The welding process is simulated using 3D Finite element model in ABAQUS FE software in two steps: 1. Transient thermal analysis and 2. Quasi-static thermo-elasto-plastic analysis. The normal residual stresses along and across the weld in the weld tow region are found to be significant with nonlinear distribution. The residual stresses increase with the increase in the thickness of the plates being welded. The nature of the normal residual stress along the weld is found to be tensile-compressive-tensile and the nature of normal residual stress across the weld is found to be tensile along the thickness direction.


2007 ◽  
Vol 348-349 ◽  
pp. 449-452 ◽  
Author(s):  
Paolo Lazzarin ◽  
Filippo Berto ◽  
D. Radaj

The paper demonstrates the close correspondence between two local approaches to assess the fatigue strength of welded joints: Radaj’s approach based on fictitious notch rounding and a recently proposed approach based on the local strain energy density (SED) averaged over a given control volume. This volume surrounds the weld root or weld toe, both modelled as sharp (zero radius) V-notches with different opening angles. The two approaches are applied to load carrying and non-load carrying cruciform joints and the theoretical fatigue notch factors Kf are compared. The SED averaged over the control volume is determined from finite element models with very fine meshes, as typically designed to evaluate the intensity of the asymptotic stress distributions, and also from coarse meshes, showing a surprisingly good correspondence.


Sign in / Sign up

Export Citation Format

Share Document