Progressive Failure Analysis of Unidirectional-Fabric Laminated Composite Joints under Pin-Loading

2007 ◽  
Vol 334-335 ◽  
pp. 1-4
Author(s):  
Jin Hwe Kweon ◽  
Hee Jin Son ◽  
Ji Young Choi ◽  
So Young Shin ◽  
Jin Ho Choi ◽  
...  

A two-dimensional progressive failure analysis is conducted to predict the failure loads and modes of carbon-epoxy composite joints under pin-loading. An eight-node laminated shell element is used for the finite element modeling. Post-failure stiffness is evaluated based on the complete unloading model combined with various failure criteria. The comparison of finite element and experimental results shows that the finite element analysis based on the combined maximum stress and Yamada-Sun criteria most accurately predicts the failure loads of the composite laminated joints.

2017 ◽  
Vol 27 (7) ◽  
pp. 963-978 ◽  
Author(s):  
Hadi Bakhshan ◽  
Ali Afrouzian ◽  
Hamed Ahmadi ◽  
Mehrnoosh Taghavimehr

The present work aims to obtain failure loads for open-hole unidirectional composite plates under tensile loading. For this purpose, a user-defined material model in the finite element analysis package, ABAQUS, was developed to predict the failure load of the open-hole composite laminates using progressive failure analysis. Hashin and modified Yamanda-Sun’s failure criteria with complete and Camanho’s material degradation model are studied. In order to achieve the most accurate predictions, the influence of failure criteria and property degradation rules are investigated and failure loads and failure modes of the composites are compared with the same experimental test results from literature. A good agreement between experimental results and numerical predictions was observed.


Author(s):  
Shuangqiang Liang ◽  
Chenglong Zhang ◽  
Ge Chen ◽  
Qihong Zhou ◽  
Frank Ko

The stress concentration caused by notches is a common engineering issue for composite structure application. 3D braided composite possess excellent damage tolerance compared to common laminates. The tensile properties of 3D braided composite with open-hole and un-notched were experimentally examined. The mechanic properties of 3D braided composite in other directions are predicted using FGM (Fabric Geometry Model) and finite element analysis. The stress distributions around the hole and perpendicular to the loading direction are analyzed based on Abaqus software. The simulation results were compared with Lekhnitskii's analytical study. The open-hole strength of 3D braided composite was predicted respectively using Average stress failure criteria, Point stress failure criteria (PSC), and also the progressive failure analysis based on different failure criteria. The predicted strength results were compared to the experimental values. The results show the PSC predicted strength matched the experiment, while the progressive failure analysis can predict the failure initiation, propagation and final failure mode.


2014 ◽  
Vol 592-594 ◽  
pp. 1151-1154 ◽  
Author(s):  
Appaso M. Gadade ◽  
Achchhe Lal ◽  
Bhairu N. Singh

A finite element analysis procedure is developed for progressive failure analysis of laminated composite plates under in plane tensile loading. A finite element model is based on higher order shear deformation theory (HSDT) with seven degrees of freedom. The degradation technique used for degradation of material properties of a failed ply is a ply discounting approach. The mode dependant Hashin and Lee failure criterion is used for the progressive failure analysis. The results of first ply failure load and last ply failure load are obtained for different stacking sequence of composite plate. The results shows that a considerable amount of strength remains un utilized in composite laminates after first ply failure of laminates.


2018 ◽  
Vol 25 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Jifeng Zhang ◽  
Qiang Xie ◽  
Yonggang Xie ◽  
Limin Zhou ◽  
Zhenqing Wang

AbstractFour different local reinforcement schemes used in composite bolted joints were studied. In numerical study, a set of 3-D failure criteria was used and the progressive failure analysis was implemented via user-defined subroutine vectorized user-material (VUMAT), which was programmed by the commercial finite element (FE) software ABAQUS. In the experiment, test specimens were manufactured with different local reinforcement schemes, and the mechanical performances of these specimens were tested under tensile loads. Failure modes of these specimens were observed and mechanical performances of test specimens with local reinforcement were studied. It was found that the numerical results agreed well with the experiment. It was also found that local reinforcement schemes influenced the mechanical performances of bolted joints obviously and that the tensile strength of composite bolted joints could be improved significantly by burying laminate slices.


Sign in / Sign up

Export Citation Format

Share Document