scholarly journals Open-Hole 3D Braided Composites Strength Prediction and Stress Analysis

Author(s):  
Shuangqiang Liang ◽  
Chenglong Zhang ◽  
Ge Chen ◽  
Qihong Zhou ◽  
Frank Ko

The stress concentration caused by notches is a common engineering issue for composite structure application. 3D braided composite possess excellent damage tolerance compared to common laminates. The tensile properties of 3D braided composite with open-hole and un-notched were experimentally examined. The mechanic properties of 3D braided composite in other directions are predicted using FGM (Fabric Geometry Model) and finite element analysis. The stress distributions around the hole and perpendicular to the loading direction are analyzed based on Abaqus software. The simulation results were compared with Lekhnitskii's analytical study. The open-hole strength of 3D braided composite was predicted respectively using Average stress failure criteria, Point stress failure criteria (PSC), and also the progressive failure analysis based on different failure criteria. The predicted strength results were compared to the experimental values. The results show the PSC predicted strength matched the experiment, while the progressive failure analysis can predict the failure initiation, propagation and final failure mode.

2017 ◽  
Vol 27 (7) ◽  
pp. 963-978 ◽  
Author(s):  
Hadi Bakhshan ◽  
Ali Afrouzian ◽  
Hamed Ahmadi ◽  
Mehrnoosh Taghavimehr

The present work aims to obtain failure loads for open-hole unidirectional composite plates under tensile loading. For this purpose, a user-defined material model in the finite element analysis package, ABAQUS, was developed to predict the failure load of the open-hole composite laminates using progressive failure analysis. Hashin and modified Yamanda-Sun’s failure criteria with complete and Camanho’s material degradation model are studied. In order to achieve the most accurate predictions, the influence of failure criteria and property degradation rules are investigated and failure loads and failure modes of the composites are compared with the same experimental test results from literature. A good agreement between experimental results and numerical predictions was observed.


2007 ◽  
Vol 334-335 ◽  
pp. 1-4
Author(s):  
Jin Hwe Kweon ◽  
Hee Jin Son ◽  
Ji Young Choi ◽  
So Young Shin ◽  
Jin Ho Choi ◽  
...  

A two-dimensional progressive failure analysis is conducted to predict the failure loads and modes of carbon-epoxy composite joints under pin-loading. An eight-node laminated shell element is used for the finite element modeling. Post-failure stiffness is evaluated based on the complete unloading model combined with various failure criteria. The comparison of finite element and experimental results shows that the finite element analysis based on the combined maximum stress and Yamada-Sun criteria most accurately predicts the failure loads of the composite laminated joints.


2012 ◽  
Vol 498 ◽  
pp. 42-54 ◽  
Author(s):  
S. Benbelaid ◽  
B. Bezzazi ◽  
A. Bezazi

This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.


2020 ◽  
Vol 11 (1) ◽  
pp. 185
Author(s):  
Jian Shi ◽  
Mingbo Tong ◽  
Chuwei Zhou ◽  
Congjie Ye ◽  
Xindong Wang

The failure types and ultimate loads for eight carbon-epoxy laminate specimens with a central circular hole subjected to tensile load were tested experimentally and simulated using two different progressive failure analysis (PFA) methodologies. The first model used a lamina level modeling based on the Hashin criterion and the Camanho stiffness degradation theory to predict the damage of the fiber and matrix. The second model implemented a micromechanical analysis technique coined the generalized method of cells (GMC), where the 3D Tsai–Hill failure criterion was used to govern matrix failure, and the fiber failure was dictated by the maximum stress criterion. The progressive failure methodology was implemented using the UMAT subroutine within the ABAQUS/implicit solver. Results of load versus displacement and failure types from the two different models were compared against experimental data for the open hole laminates subjected to tensile displacement load. The results obtained from the numerical simulation and experiments showed good agreement. Failure paths and accurate damage contours for the tested specimens were also predicted.


2019 ◽  
Vol 9 (24) ◽  
pp. 5572
Author(s):  
Donghyun Yoon ◽  
Sangdeok Kim ◽  
Jaehoon Kim ◽  
Youngdae Doh

Progressive failure analysis (PFA) is widely used to predict the failure behavior of composite materials. As a structure becomes more complex with discontinuities, prediction of failure becomes more difficult and mesh dependence must be taken into account. In this study, a PFA model was developed using the Hashin failure criterion and crack band model. The failure initiation was evaluated using the Hashin failure criterion. If failure initiation occurred, the damage variables at each failure mode (fiber tension and compression; matrix tension and compression) were calculated according to linear softening degradation and they were then used to derive the damaged stiffness matrix. This matrix reflected a degraded material, and PFA was continued until the damage variables became “1,” implying complete material failure. A series of processes were performed using the finite element method program ABAQUS with a user-defined material subroutine. To evaluate the proposed PFA model, experimental results of open-hole composite laminate tests were compared with the obtained numerical results. The strain behaviors were compared using a digital image correlation system. The obtained numerical results were in good agreement with the experimental ones.


2016 ◽  
Vol 853 ◽  
pp. 483-487
Author(s):  
Yan Yv Wang ◽  
Zhi Qiang Cheng ◽  
Bao Sheng Liu

Composite overwrap systems have been widely used to repair damaged pipelines. Its effectiveness has been proven by many researches and engineering applications. However, the research on progressive failure mode of the repaired structure has not been reported. In the present paper, finite element method with Hashin failure criteria is developed to realize the progressive failure analysis. The predicted burst pressure is in good agreement with the burst experiment. Different from widely-reported failure progress in Composite Overwrapped Pressure Vessels (COPV), the progressive failure analysis for the defected pipeline overwrapped by composite reveals very different failure stages: stable failure propagation and rapid failure propagation. The identification of critical pressure between these two stages is valuable in composite reparation design for the defected pipeline.


Sign in / Sign up

Export Citation Format

Share Document