scholarly journals Functionalization of Multi-Walled Carbon Nanotubes Via UV/O3 and Silane Treatments

2007 ◽  
Vol 334-335 ◽  
pp. 797-800
Author(s):  
Peng Cheng Ma ◽  
Jang Kyo Kim ◽  
Ben Zhong Tang

This paper presents a method for chemical functionalization of CNTs through the combined process of UV/O3 treatment and silanization process. FT-IR and TEM were employed to characterize the changes in surface functionalities and morphology. The results indicate improved dispersion and attachment of silane molecules on the surface of CNTs. Epoxy matrix nanocomposites containing functionalized CNTs showed much better dispersion with associated higher mechanical properties than those without functionalization. These findings confirmed the improved interfacial interactions due to covalent bonding between the functionalized CNTs and epoxy resin.

2018 ◽  
Vol 7 (4.36) ◽  
pp. 1149 ◽  
Author(s):  
Nguyen Tuan Anh ◽  
Nguyen Quang Tung ◽  
Bach Trong Phuc ◽  
Nguyen Xuan Canh

In this study, the flame retardants epoxy nanocomposites were prepared by combining mechanical stir and sonication of epoxy Epikote 240 (EE240) resin, chlorinated paraffin, atimony oxide, multi-walled carbon nanotubes (MWCNTs) and montmotillonite clay. Resultants of CNTs, montmorillonite and flame retardant additives were investigated limiting oxygen (LOI) and UL-94, combustion rate. The SEM, FE-SEM, TEM were measured to analyze the dispersion of MWCNTs and montmorillonite clay in epoxy matrix. The mechanical properties including tensile strength, compressive strength, flexural strength and impact strength Izod were studied. The results of testing burning and mechanical properties indicated that CNTs were more efficient than clay in improving the flame retardancy of materials. The dispersion method combining of mechanical stir and sonication is the good choice to distribute additive agents into epoxy matrix.  


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 466
Author(s):  
Erika Magnafico ◽  
Maryam Karimzadeh ◽  
Giulia Lanzara

Due to their superior physical and electro-mechanical properties, Carbon Nanotubes (CNTs) are one of the most promising composite fillers to realize ultralight and flexible strain sensors that can be used, among others, to monitor strain concentrations within a structure when damage occurs. In this study, sensors are made of Multi-walled Carbon Nanotubes (MWNTs) embedded in a Polymide (PI) matrix. Nanocomposites are characterized under no-load conditions to study the electrical properties, and under tensile loading conditions, to evaluate the electromechanical and piezoresistive response. The results highlight a two orders of magnitude decrease in electrical resistivity if compared with previous studies, the capability to instantaneously respond to unpredictable deformations and to easily adapt to three-dimensional shapes. The beauty of the as conceived nanocomposite film, if compared with the commercially available strain gages, is its unprecedented potential expandability to monitor larger areas without the loss of ultra-low local (in scale) detection. Local detection is in fact allowed by nanoscale morphology changes that induce changes in local electrical conduction. The selected polyimide matrix allows the use of the proposed sensor to harsh and high temperature environments while keeping high flexibility and excellent mechanical properties, key parameters for the realization of reliable electromechanical films.


2011 ◽  
Vol 13 (2) ◽  
pp. 62-69 ◽  
Author(s):  
Maria Wladyka-Przybylak ◽  
Dorota Wesolek ◽  
Weronika Gieparda ◽  
Anna Boczkowska ◽  
Ewelina Ciecierska

The effect of the surface modification of carbon nanotubes on their dispersion in the epoxy matrix Functionalization of multi-walled carbon nanotubes (MWCNTs) has an effect on the dispersion of MWCNT in the epoxy matrix. Samples based on two kinds of epoxy resin and different weight percentage of MWCNTs (functionalized and non-functionalized) were prepared. Epoxy/carbon nanotubes composites were prepared by different mixing methods (ultrasounds and a combination of ultrasounds and mechanical mixing). CNTs modified with different functional groups were investigated. Surfactants were used to lower the surface tension of the liquid, which enabled easier spreading and reducing the interfacial tension. Solvents were also used to reduce the liquid viscosity. Some of them facilitate homogeneous dispersion of nanotubes in the resin. The properties of epoxy/nanotubes composites strongly depend on a uniform distribution of carbon nanotubes in the epoxy matrix. The type of epoxy resin, solvent, surfactant and mixing method for homogeneous dispersion of CNTs in the epoxy matrix was evaluated. The effect of CNTs functionalization type on their dispersion in the epoxy resins was evaluated on the basis of viscosity and microstructure studies.


Sign in / Sign up

Export Citation Format

Share Document