Thiolated Eudragit-Coated Chitosan Microspheres as an Oral Drug Delivery System

2007 ◽  
Vol 342-343 ◽  
pp. 445-448 ◽  
Author(s):  
Ji Shan Quan ◽  
Hu Lin Jiang ◽  
Yun Jaie Choi ◽  
Mi Kyong Yoo ◽  
Chong Su Cho

The aim of this study is to prepare mucoadhesive chitosan microspheres for protein drug to deliver to intestine through oral administration. The thiolated Eudragit was synthesized by reaction between L-cysteine hydrochloride and Eudragit® L-100. About 8 mol-% of cysteine was introduced to the Eudragit-cysteine conjugate. The conjugate was used to coat bovine serum albumin (BSA)-loaded chitosan microspheres. The average particle sizes of BSA-loaded thiolated Eudragit-coated chitsoan microspheres (TECMs) were 4.06±0.74 .m and the uniform sizedistribution was shown. The in vitro release of BSA from BSA-loaded TECMs was pH-dependent. Our results indicated that thiolated Eudragit might be a good candidate as a coating material for oral delivery of protein drug owing to mucoadhesive and pH-sensitive properties.

2007 ◽  
Vol 342-343 ◽  
pp. 433-436 ◽  
Author(s):  
Hu Lin Jiang ◽  
Rohidas B. Arote ◽  
Ji Shan Quan ◽  
Mi Kyong Yoo ◽  
You Kyoung Kim ◽  
...  

Thiolated polymers have been studied by many researchers because of the mucoadhesive properties of thiol group. Alginate is a natural and biocompatible polymer that has been widely used in drug delivery. In this study, thiolated chitosan microspheres (TCMs) were prepared by ionic gelation process with tripolyphosphate and then, the bovine growth hormone (BGH) was loaded as a model drug. Finally, the BGH-loaded TCMs (BTCMs) were coated with alginate to improve the stability in gastrointestinal (GI) track. The alginate-coated BTCMs (ABTCMs) were observed as spherical shapes. The average particle sizes of ABTCMs were 6.97±0.55 -m and the sizedistribution was shown uniformly. Release of BGH from ABTCMs was decreased by coating with alginate and increased rapidly with the change in medium pH from 1.2 to 7.4. Results indicate that the ABTCMs have a potential as a drug carrier for oral drug delivery.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 146 ◽  
Author(s):  
Yifan Yang ◽  
Yunzhi Yin ◽  
Jun Zhang ◽  
Tiantian Zuo ◽  
Xiao Liang ◽  
...  

Oral delivery is considered the preferred route of administration due to its convenience and favorable compliance. Here, docetaxel (DTX) loaded polylactic-co-glycolic acid (PLGA) nanoparticles, coated with polyethyleneimine–folic acid (PEI-FA) and polyethyleneimine–borneol (PEI-BO), were designed to enhance oral absorption (FA/BO-PLGA-NPs). The FA/BO-PLGA-NPs were spherical and smooth with an average size of (137.0 ± 2.1) nm. Encapsulation efficiency (EE%) and drug loading (DL%) were (80.3 ± 1.8)% and (2.3 ± 0.3)%, respectively. In vitro release studies showed that approximately 62.1% of DTX was released from FA/BO-PLGA-NPs in media at pH 7.4. The reverted gut sac method showed that the absorption of FA/BO-PLGA-NPs in the intestines was approximately 6.0 times that of DTX. Moreover, cellular uptake suggested that the obtained FA/BO-PLGA-NPs could be efficiently internalized into Caco-2 cells via FA-mediated active targeting and BO-mediated P-glycoprotein (P-gp) inhibition. Pharmacokinetics study demonstrated that after oral administration of DTX at a dose of 10 mg/kg in FA/BO-PLGA-NPs, the bioavailability of FA/BO-PLGA-NPs was enhanced by approximately 6.8-fold compared with that of DTX suspension. FA/BO-PLGA-NPs caused no obvious irritation to the intestines. Overall, the FA/BO-PLGA-NP formulation remarkably improved the oral bioavailability of DTX and exhibited a promising perspective in oral drug delivery.


Author(s):  
Ranajit Nath ◽  
Ratul Bhowmik ◽  
Rajarshi Chakraborty ◽  
Sourav Datta ◽  
Apala Chakraborty

Diltiazem, a calcium ion cellular influx inhibitor is known for its limited and variable bioavailability. This study is intended to explore the benefits of microemulsion formulation as an oral drug delivery system for immediate release to improve the bioavailability and efficacy of Diltiazem. Methods: Oil in water microemulsion was prepared using the simple water titration method. The optimized formulation was evaluated for physicochemical parameters like viscosity, pH, conductivity, and accelerated stability studies. In vitro release, diltiazem microemulsion was investigated.


Author(s):  
Omar Saeb Salih ◽  
Roaa Abdalhameed Nief

ABSTRACTObjective: The objective of this study is to develop a controlled release matrix tablet of candesartan cilexetil to reduce the frequency of administration,enhance bioavailability and improve patient compliance; a once daily sustained release formulation of candesartan cilexetil is desirable.Methods: The prepared tablets from F1 to F24 were evaluated with different evaluation parameters like weight variation, drug content, friability,hardness, thickness and swelling ability. In vitro release for all formulas were studied depends on the type and amount of each polymer, i.e. (16 mg,32 mg and 48 mg) respectively beside to the combination effect of polymers on the release of the drug from the tablet.Results: In vitro release showed that formula 13 had the faster release (100% after 4 h) which contained acacia (1:1) and the lowest sustain releasewas showed for F7 (73% after 8 h) which contained HPMC K100M (1:1). Formula 1 was an 89 % release after 8 h which contain eudragit RS100; F4was a 100 % release after 5 h which contain Na CMC, F10 was a 100% after 8 h which contain xanthan gum and F16 was a 100 % release after 5 hwhich contain tragacanth polymer. Formula 9 had a lower release than F7 and F8 respectively. Formula 7 can be used for sustain oral drug delivery ofcandesartan cilexetil while Formula 13 can be used in contrary as fast release tablets for faster response.Conclusion: Controlled drug delivery system is promising for less dosing and higher patient compliance.Keywords: Angiotensin II receptor antagonist, Hypertension, Matrix system, Control release.


Author(s):  
SHIVAM SHARMA ◽  
VIVEK

Objective: The purpose of this study was to develop and in vitro evaluation phytosome of terbinafine HCL to enhance the bioavailability for oral route. Methods: The novel phytosome of terbinafine hydrochloride (TFH) was formulated with the molar ratio (1:2) of drug and phospholipid by using solvent evaporation technique. The resulting TFH-PC was determined by means of particle size analyzer (PSA), percentage yield, microscopy, drug content, transmission electron microscopy (TEM). Substantial contact of terbinafine HCL with phospholipids was completed through Fourier transforms infrared spectroscopy (FTIR). Results: The all relevant results of TFH-PC were showed that the percentage entrapment efficiency of formulation was found in 76% to 90%. In vitro release data were exhibited approximately 65% to 79% of the drug released from the TFH-PC formulation by using dialysis membrane technique. Therefore, Formulation (F3) was accomplished that phytosome contain the superior physical characters and compatibility with drug and phospholipids than to make it easy to overcome the competence of drug to pass the lipid-rich bio-membrane. Conclusion: In present work, terbinafine loaded phytosome was formulated for increasing the oral bioavailability of selected drug. Hence, TER-HCL phytosome were effectively improved the absorption of drug in form of phospholipids complex.


2021 ◽  
Vol 21 (7) ◽  
pp. 3651-3655
Author(s):  
Woo Chang Kwon ◽  
Moonhee Choi ◽  
Kyung Chan Kang ◽  
Dong Hyun Kim

A formulation for controlled delivery of ibuprofen (IBU) involving montmorillonite (MMT) nanoclays has been proposed. The present work has investigated the beneficial effect of MMT in improving controlled delivery of IBU. The intercalation of IBU into the interlayer of MMT was studied under different processing conditions such as reaction time and initial concentration of IBU. To characterize the IBU/MMT composites, X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) were performed. The release behavior of IBU from IBU/MMT composites have been investigated under vitro conditions using buffer media of simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 7.4) at 37 °C. Controlled release of IBU from IBU/MMT composite has been observed during in vitro release experiments. Different mathematical models were used for fitting our experimental results, among them the best fitting was found for Higuchi equation based on the parabolic diffusion process.


2006 ◽  
Vol 6 (9) ◽  
pp. 3203-3209 ◽  
Author(s):  
Hesham H. Salman ◽  
Carlos Gamazo ◽  
Miguel A. Campanero ◽  
Juan M. Irache

The aim of this work was to design mannosylated Gantrez® AN nanoparticles (M-NP) and to describe their gut bioadhesive properties in order to develop a promising carrier for future applications in oral drug delivery. For that purpose, the process of the nanoparticles coating with mannosamine was optimized by the incubation of Gantrez® AN nanoparticles with different volumes of mannosamine aqueous solutions at different times. Then, the nanoparticles were characterized by measuring the size, zeta potential, mannosamine content, and concanavalin A (Con A) binding. Furthermore, in vivo quantitative bioadhesion study and kinetic analysis of the bioadhesion curves were performed after oral administration to rats of fluorescently labelled nanoparticles. The selected mannosylated nanoparticles (M-NP1 and M-NP10) were of homogenous sizes (about 300 and 200 nm), negatively charged and successfully coated with 36 and 18 μg mannosamine/mg NP, respectively. In vitro agglutination assay using Con A confirmed the successful coating of nanoparticles with mannosamine. The gut distribution profile of M-NP1 indicated a stronger bioadhesive capacity than M-NP10 and non-mannosylated ones, 1 h post-administration. Interestingly, M-NP1 showed an important ileum tropism where around 20% of the given dose remained adhered. Besides, the kinetic parameters of the bioadhesion profile of M-NP1 indicated their higher bioadhesive capacity with Qmax and AUCadh about 2-times higher than control ones. Moreover, fluorescence microscopy corroborated the stronger interactions of M-NP1 with the normal mucosa and demonstrated a strong uptake of these carriers by Peyer's patches. In conclusion, we propose that mannosylated nanoparticles could be a promising non-live vector for oral delivery strategies.


Author(s):  
ANKIT SONI ◽  
MAHESH KUMAR KATARIA

Objective: Omeprazole magnesium is indicated for the treatment of erosive esophagitis associated with gastroesophageal reflux disease. It is one of the highly prescribed proton pump inhibitor in the management of peptic ulcer diseases. The therapeutic concentration of a drug in blood can be maintained for a prolonged period of time by administering it in the form of in situ floating gel dosage form. Omeprazole magnesium undergoes degradation at a low pH of the esophagus and stomach; it is therefore given as in situ gel, so, there is minimum contact with acidic pH. Methods: Omeprazole magnesium suspension prepared using various polymers and floating agents in varying concentrations. Several evaluation tests including dissolution test to ensure the release of the drug from formulation by in vitro technique, color and homogeneity, in vitro floating duration, in vitro gelling capacity, drug content determination, pH of the formulation, and floating lag time were studied. Results: All formulations demonstrated good Fourier-transform infrared compliance and no interaction between drug, polymer, and other excipients. The study’s findings show that the formulation F6 showed the best results. Conclusion: The developed formulation was a viable alternative conventional solution by virtue of its ability to enhance bioavailability through its longer gastric residence time and ability to sustain drug release as well as the advantage of floating and pH which minimize the degradation of omeprazole magnesium which is easily degraded by acidic environment.


Sign in / Sign up

Export Citation Format

Share Document